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Abstract—Code smells represent poor implementation choices
performed by developers when enhancing source code. Their
negative impact on source code maintainability and comprehen-
sibility has been widely shown in the past and several techniques
to automatically detect them have been devised. Most of these
techniques are based on heuristics, namely they compute a set of
code metrics and combine them by creating detection rules; while
they have a reasonable accuracy, a recent trend is represented
by the use of machine learning where code metrics are used as
predictors of the smelliness of code artefacts. Despite the recent
advances in the field, there is still a noticeable lack of knowledge
of whether machine learning can actually be more accurate than
traditional heuristic-based approaches. To fill this gap, in this
paper we propose a large-scale study to empirically compare
the performance of heuristic-based and machine-learning-based
techniques for metric-based code smell detection. We consider
five code smell types and compare machine learning models with
DECOR, a state-of-the-art heuristic-based approach. Key findings
emphasize the need of further research aimed at improving the
effectiveness of both machine learning and heuristic approaches
for code smell detection: while DECOR generally achieves better
performance than a machine learning baseline, its precision is
still too low to make it usable in practice.

Index Terms—Code Smells Detection; Heuristics; Machine
Learning; Empirical Study

I. INTRODUCTION

Software maintenance and evolution is a complex activity
that enforces developers to steadily modify source code to adapt
it to new requirements or fix defects identified in production
[1]. Such an activity is usually performed under strict deadlines
and developers are often forced to set aside good programming
practices and principles to deliver the most appropriate product
on time [2]–[4]. This may lead to technical debt [5], namely the
introduction of design issues that may negatively affect systems
maintainability in the future. One of the foremost indications
of the presence of technical debt is represented by code smells
[6], i.e., sub-optimal design solutions that developers apply
on a software system. Long methods implementing several
functionalities, classes having complex structures, or excessive
coupling between classes are just few examples of code smells
typically observable in existing software systems [7].

In recent years, code smells has been investigated under
different perspectives [8], [9]. Their introduction [10], [11] and
evolution [12]–[16], their impact on reliability [17], [18] and
maintainability [7], [19], as well as the way developers perceive
them [20]–[22] have been deeply analyzed in literature and have
revealed that code smells represent serious threats to source
code maintenance and evolution. Most notably, the impact of

code smells on program comprehension has been investigated
by Abbes et al. [23] and Yamashita and Moonen [24]. Both
studies have demonstrated that code smells negatively impact
program comprehension by reducing the maintainability of the
affected classes.

For all these reasons, several techniques to automatically
identify code smells in source code have been widely investi-
gated [25], [26]. Most of these techniques rely on heuristics and
discriminate code artefacts affected (or not) by a certain type of
smell through the application of detection rules that compare
the values of relevant metrics extracted from source code
against some empirically identified thresholds. As an example,
Moha et al. [27] devised DECOR, a method to define code
smell detection rules using a Domain-Specific Language. The
accuracy of DECOR, as well as of the other heuristic approaches,
has been empirically assessed and was found to be fairly high,
e.g., the F-Measure of DECOR when detecting Blob instances is
≈80%. Nevertheless, there are some important limitations that
threaten the adoption of these heuristic approaches in practice
[25], [28]. First, code smells identified by these techniques
are subjectively interpreted by developers, meaning that they
output code smell candidates that are not considered as actual
problems by developers [29], [30]. Furthermore, the agreement
between detectors is very low [31], which means that different
detectors are required to detect the smelliness of different code
components. At last, the performance of most of the current
detectors is strongly influenced by the thresholds needed to
identify smelly and non-smelly instances [25].

To overcome these limitations, researchers recently adopted
machine learning (ML) to avoid thresholds and decrease the
false positive rate [32]: in this schema, a classifier (e.g., Logistic
Regression [33]) exploits a set of independent variables (a.k.a.,
predictors) to calculate the value of a dependent variable (i.e.,
the presence of a smell or degree of the smelliness of a
code element). Although the use of machine learning looks
promising, its actual accuracy for code smell detection is still
under debate, as previous work has observed contrasting results
[32], [34]. More importantly, it is still unknown whether these
techniques actually represent a better solution with respect
to traditional heuristic ones. In other words, the problem of
assessing the feasibility of machine learning for code smell
detection is still open and requires further investigations.

In this paper, we perform a step ahead toward this direction:
we propose a large-scale empirical study—that features 125



releases, 13 software systems, and 5 code smell types—in
which we compare the performance of machine learning
techniques and heuristic approaches for code smell detection.
We experiment with five code smell prediction models built
using different algorithms and compare their performance with
DECOR [27], a state-of-the-art heuristic-based approach that is
the most adopted one in literature [8], [25].

Our findings report that DECOR has slightly better perfor-
mance than machine learning approaches, thus indicating that
heuristic techniques for code smell detection still perform
better. However, its precision is extremely low and, as such, its
application in practice would be still limited. As a consequence,
we argue that the research on both machine learning and heuris-
tic approaches for code smell detection requires substantial
advances to make such techniques effective.

Structure of the paper. Section II discusses the literature
related to code smell detection. Section III describes the design
of the empirical study, while Section IV analyses the achieved
results. Section VI further discusses the results of the study and
overviews the possible threats affecting our findings. Finally,
Section VII concludes the paper.

II. RELATED WORK

Over the last decades, several researchers studied the nature
and the impact of code smells [8]. The research on the topic
can be broadly categorised in two sets. On the one hand, a
number of empirical studies have been conducted with the
aim of understanding (i) the evolution of code smells [10]–
[13], [15], [16], [35], (ii) their perception [20], [21], [36]–[38],
and (iii) their impact on non-functional attributes of source
code [7], [17]–[19], [23], [24], [39]–[41]. On the other hand,
detection approaches exploiting structural source-code-related
information [27], [42]–[44], alternative sources (i.e., historical
[45] or textual [46] properties of source code), and search-based
software engineering methods [47]–[50] have been proposed
and assessed.

In this paper, we focus on the comparison between traditional
heuristic approaches and supervised methods for metric-based
code smell detection. In this section we briefly overview the
literature related to both the aspects; a comprehensive review of
the state of the art is available in the surveys recently conducted
by de Paulo Sobrinho et al. [8] and Azeem et al. [9].

A. Heuristic Detection of Code Smells

Heuristic approaches identify code smells by means of
detection rules based on software metrics. The general process
followed by such approaches consists of two steps: (i) the
identification of the key symptoms characterising a code smell
that can be mapped to a set of thresholds based on structural
metrics (e.g., if Lines Of Code > k); (ii) the combination of
these symptoms, which leads to the final rule for detecting the
smell [27], [42]–[44], [51]. The detection techniques falling
into this category mainly differ in the set of the structural
metrics exploited, which depends on the type of code smells
to detect and how the identified key symptoms are combined.
Most of the proposed approaches obtained such a combination

by employing AND/OR operators [42], [44], [51], while more
recent ones adopted clustering methods [43].

In this context, Moha et al. [27] introduced DECOR, a
method to specify and detect code and design smells using
a Domain-Specific Language (DSL). Following the general
process described above, DECOR uses a set of rules, called
“rule card”1, that describe the intrinsic characteristics of a class
affected by a smell. For instance, a Blob is detected when a
class has an LCOM5 (Lack of Cohesion Of Methods) [52]
higher than 20, a number of methods and attributes higher than
20, a name that contains a suffix in the set {Process, Control,
Command, Manage, Drive, System}, and it has a one-to-many
association with data classes. The authors showed that DECOR
can identify smells with an average F-Measure of ≈80%.

Tsantalis et al. [43] presented JDEODORANT, a tool whose
first version was able to detect Feature Envy bad smells and
suggest move method refactoring opportunities. Afterwards,
other code smells have been supported (i.e., State Checking,
Long Method, and Blob) [53]–[55]. The detection strategies
for these smells are based on code metrics that are then
connected to each other using supervised clustering algorithms
and thresholds to cut the resulting dendrograms. The empirical
assessment of the performance of JDEODORANT showed its
high accuracy (on average, ≈75%).

Despite the good performance achievable with the discussed
techniques, previous work [25], [28] pointed out three important
limitations that might preclude their use in practice: (i)
subjectiveness of developers with respect to code smells
detected by these tools, (ii) scarce agreement between different
detectors, and (iii) difficulties in finding good thresholds to be
used for detection. The adoption of machine learning techniques
may potentially mitigate these problems, however there is
limited evidence of whether and how much machine learning
actually improves the performance of traditional approaches:
thus, our paper aims at extending previous work by comparing
the performance obtainable by heuristic and machine learning
approaches for code smell detection.

B. Machine Learning Techniques for Detecting Code Smells

As opposed to heuristic approaches, the techniques in this
category exploit a supervised method: more specifically, a
set of independent variables (a.k.a., predictors) is used to
predict the value of a dependent variable (i.e., the smelliness
of a class) using a machine learning classifier (i.e., Logistic
Regression [33]). The model can be trained using a sufficiently
large amount of data available from the project under analysis,
i.e., within-project strategy, or using data coming from other
(similar) software projects, i.e., cross-project strategy. These
approaches clearly differ from the heuristics-based ones, as
they rely on classifiers to discriminate the smelliness of classes
rather than on predefined thresholds upon computed metrics.

Kreimer [56] proposed a prediction model that, on the basis
of code metrics used as independent variables, can lead to high
values of accuracy. It adopts DECISION TREES to detect two

1http://www.ptidej.net/research/designsmells/



code smells (i.e., Blob and Long Method). Later on, Amorim
et al. [57] confirmed the previous findings by evaluating the
performance of DECISION TREES on four medium-scale open-
source projects. Vaucher et al. [58] studied Blob’s evolution
relying on a NAIVE BAYES classifier, whereas Maiga et al.
[59], [60] proposed the use of SUPPORT VECTOR MACHINE
(SVM) and showed that such a model can reach an F-Measure
of ≈80%. The use of BAYESIAN BELIEF NETWORKS to detect
Blob, Functional Decomposition, and Spaghetti Code instances
on open-source programs, proposed by Khomh et al. [61],
[62] lead to an overall F-Measure close to 60%. Similarly,
Hassaine et al. [63] defined an immune-inspired approach
for the detection of Blob smells, while Oliveto et al. [64]
used a B-Splines to detect them. More recently, some authors
investigated the feasibility of machine-learning to detect code
clones [65]–[67]. Arcelli Fontana et al.made the most relevant
progress in this field [32], [68], [69]. In their work, they (i)
theorised that ML might lead to a more objective evaluation
of code smells hazardousness [68], (ii) provided a ML method
to assess code smell intensity [69], and (iii) compared 16 ML
techniques for the detection of four code smell types [32]
showing that ML can lead to F-Measure values close to 100%.
Nevertheless, recently Di Nucci et al. [34] demonstrated that,
in a real use-case scenario, the results achieved by Arcelli
Fontana et al. [32] cannot be generalised, thus contrasting the
real effectiveness of machine learning for code smell detection.

Our work builds on top of the papers discussed above and
aims at comparing machine learning approaches with heuristic
metric-based ones to assess the real capabilities of ML in
the context of code smell detection and provide a more solid
ground for future research in the field.

III. EMPIRICAL STUDY DEFINITION AND DESIGN

The goal of the study is to compare heuristic with machine
learning approaches for code smell detection, with the purpose
of assessing the extent to which code smell prediction models
can be effectively used in practice. The perspective is of
both researchers and practitioners: the former are interested in
understanding possible limitations of the current approaches,
while the latter are interested in evaluating the performance of
machine learning for code smell detection. More specifically,
we aim at addressing the following research question:

RQ. How do machine learning-based techniques for code
smell detection perform when compared to a baseline

heuristic-based approach?

With this research question we aim at providing a deeper
knowledge on the capabilities of machine learning for code
smell detection. The following subsections report the method-
ological steps that we conducted to address RQ.

A. Context of the Study

The context of the study was represented by software systems
and code smells. As for the former, we exploited a publicly
available dataset composed of 125 releases of 13 open source
software systems [70], whose description is reported in Table I.

The projects of the dataset are heterogeneous, have different
size, lifetime, and belong to various application domains: as
such, we could reduce threats to the generalizability of the
empirical study. The dataset contains a set of 8, 534 manually
validated code smell instances of five different types: thus, we
could perform our study on a dataset of real code smells, in
contrast with the artificially created ones that were used in
previous research on code smell prediction [9].

Table II reports the descriptive statistics related to the
distribution of code smells. As it is possible to observe, the
median number of code smells in each considered release is
pretty low (it ranges from 4 to 26). The absolute numbers
correspond to extremely low relative percentages: an an
example, we noticed that the maximum number of God Class
instances (24), in the project APACHE DERBY 10.3.3.0, only
represents the 1% of the total number of classes belonging to
this system (2220). On the one hand, the observed distribution
confirms previous findings in the field [70]. On the other hand,
the extremely low number of code smells clearly evidences
that the problem in question is highly unbalanced.

With respect to code smells, we considered five different
types defined in the catalog by Fowler [6]:

God Class. This smell characterizes classes having a large
size, poor cohesion, and several dependencies with other data
classes of the system [6]. Previous work showed that this smell
has a negative impact on both program comprehension and
software maintainability [19], [23], [70].

Spaghetti Code. Classes affected by this smell exhibit a
functional-style programming structure, declaring a number of
long methods without parameters [6]. Also in this case, the
negative impact on comprehensibility and maintainability has
been previously shown [19], [23], [70].

Class Data Should be Private. This smell appears in
cases where a class exposes its attributes, thus violating the
information hiding principle [6]; in this case, previous work
showed that developers often do not recognize the presence
of this smell and consider it as less harmful than others for
maintainability [20], [22].

Complex Class. Classes presenting a overly high cyclomatic
complexity [71] are affected by this design flaw. As shown
in the literature [19], [20], [70], it can worsen software
maintainability and reduce the ability of developers to properly
enhance the corresponding source code.

Long Method. Methods implementing more than one
functionality are affected by this smell [6]. It can lower program
understanding and make the source code more change- and
fault-prone [19], [20], [70].

In the remaining of this section, we explain the machine
learning-based and heuristic-based detection solutions exploited
in our study to identify instances of these code smells.

B. Heuristic-Based Detection of Code Smells

Among all the techniques and tools available for code
smell detection [8], [25], we relied on DECOR [27] as a
metric-based heuristic baseline for several reasons. First, this



Table I
PROJECTS CONSIDERED IN THE STUDY

Project Description # Releases # Classes # Methods
Ant Build System 10 1,002-1,218 9,333-11,919
ArgoUML UML Modeling Tool 13 889-2,221 7,252-17,309
Cassandra Database Management System 8 470-727 4,422-7,901
Derby Relational Database Management System 9 1,733-2,920 23,107-421,183
Eclipse Integrated Development Environment 21 812-5,736 10,819-51,008
Elastic Search RESTful Search and Analytics Engine 8 1,785-2,466 12,393-18,225
Hadoop Tool for Distributed Computing 9 148-344 1,224-3,080
HSQLDB HyperSQL Database Engine 10 556-601 10,075-11,016
Incubating Codebase 6 497-787 4,210-5,767
Nutch Web-search Software 7 304-453 1,846-2,761
Qpid Messaging Tool 5 1,547-2,118 14,858-20,402
Wicket Java Application Framework 9 2,133-2,212 12,370-12,824
Xerces XML Parser 10 483-542 5,280-6,126

Table II
DESCRIPTIVE STATISTICS FOR SMELLS DISTRIBUTION

Code Smell min mean median max total
God Class 0 5.5 4 24 509
Spaghetti Code 0 12.7 11 31 1443
Class Data Should Be Private 0 11.4 11 37 1150
Complex Class 0 6.4 4 20 669
Long Method 3 48.3 26 147 4763

technique has been extensively used and showed good detection
performance (e.g., [45], [46], [61], [72]), thus representing a
valid candidate to be a baseline in our study. Furthermore,
it is based on detection rules that can be computed directly
looking at the source code of a class/method, without the need
of computationally-expensive operations (e.g., the construction
of the Abstract-Syntax Tree and the subsequent clustering
mechanism applied by JDEODORANT [43]) that would have
made the detection phase unfeasible because of the amount of
data we had to analyze. Last but not least, DECOR is publicly
available and is able to identify all the code smells considered
in the study, as described below:

God Class. A smelly instance is detected when a class has
a size higher than 500 lines of code and either an LCOM5
(Lack of Cohesion Of Methods) [52] higher than 20 or a
number of methods and attributes higher than 20.

Spaghetti Code. DECOR identifies this smell in cases where
a class has a size higher than 600 lines of code and a number
of long methods (identified as explained later) without
parameters higher than 0.

Class Data Should Be Private. In this case, DECOR com-
putes the Number Of Public Attributes (NOPA) of a class
and, if this is higher than 10, then a smell is identified.

Complex Class. The detection rule for this smell considers
the Weighted Methods per Class (WMC) metric, namely
the sum of the McCabe’s cyclomatic complexity [71] of the
methods of a class. If WMC is higher than 50, a class is
detected as affected by the smell.

Long Method. To detect this smell, the lines of code of the
method (LOC_METHOD) and the number of parameters of
the method (NP) are used. DECOR indicates the presence of

the smell is a method has more than 100 lines of code and
at least one parameter.

Table III reports the summary of all the detection rules.
The full name of the metrics is reported in Table IV. We ran
DECOR over all the 125 releases and, on the basis of the output
recommendations, we re-constructed the confusion matrices.
These were analyzed and compared with those obtained with
the machine learning models in terms of the evaluation metrics
described in Section III-D.

C. Machine Learning-Based Detection of Code Smells

Once we had defined the heuristic-based baseline, we
configured the machine learning-based classifiers to detect the
considered smells. This required several steps, ranging from
the definition of the dependent and the independent variables to
the pre-processing actions needed to avoid common problems
such as multi-collinearity and biased interpretation [73].

Dependent variable. Since in our work we were interested
in detecting code smells, we set the presence/absence of
a certain code smell as dependent variable of the machine
learning model. This information was already available in
the considered dataset.

Independent variables. As the overall goal of the study was
the comparison between heuristic and machine learning-based
detectors, we wanted to avoid that such a comparison could
have been biased by other co-factors. For this reason, the
independent variables of the model were exactly the same
used by the heuristic approach (see Table III): in this way, we
avoid the possibility that different performance might be due
to the selected metrics rather than the technique exploited.

Selection of the classifier. While several classifiers have been
previously used for code smell detection, the related literature
showed that it is unclear which of them represents the best
solution [9]. For this reason, in this work we compared
the five most commonly used ML algorithms such as
J48 [74], RANDOM FOREST [75], NAIVE BAYES [76],
SUPPORT VECTOR MACHINES [77], and JRIP [78]. To
perform a fair comparison, we applied the same configuration,
preprocessing, and training strategies to all the classifiers, as
described in the following. For the sake of space limitations,



Table III
DETECTION RULES USED BY THE HEURISTIC-BASED APPROACH.

Code Smell Detection Rule
God Class ELOC > 500 ∧ (NOM+NOA > 20 ∨ LCOM > 20)
Spaghetti Code ELOC > 600 ∧ NMNOPARAM > 0
Class Data Should Be Private NOPA > 10
Complex Class WMC > 50
Long Method LOC_METHOD > 100 ∧ NP > 1

Table IV
FULL NAMES OF THE CONSIDERED METRICS.

Acronym Full Name
ELOC Effective Lines Of Code
LCOM Lack of COhesion in Methods
LOC_METHOD Lines Of Code of METHOD
NOA Number Of Attributes
NOM Number Of Methods
NOPA Number Of Public Attributes
NP Number of Parameters
NMNOPARAM Number of Methods with NO PARAMeters
WMC Weighted Methods Count

in Section IV we only report the results achieved by the best
classifier, i.e., NAIVE BAYES, while a comprehensive report
of the accuracy of the other classifiers is available in our
online appendix [79].

Configuration and preprocessing steps. Before assessing
the accuracy of the machine learning-based models, we took
into account two aspects, i.e., classifier configuration and
feature selection, that might possibly bias their performance
[80]–[82]. We configured the hyper-parameters of the
considered classifiers by exploiting the GRID SEARCH
algorithm [83], that implements an exhaustive searching
approach of the hyper-parameter space. Secondly, we
removed highly correlated independent variables through
the CORRELATION-BASED FEATURE SELECTION (CFS)
approach [84]: this method uses correlation measures and
a heuristic search strategy to identify a subset of actually
relevant features for a model. We applied the feature
selection algorithm on each release independently, so that
the model took into account only the features that are
relevant for a specific release of the considered systems. It is
important to note that we consciously avoid the application
of balancing algorithms [85], i.e., techniques that ensure a
similar proportion of smelly and non-smelly classes/methods
in the training set. This decision was taken as a result of
experimental tests, where we observed that such algorithms
can bias the interpretation of the results in the context of
code smell prediction. Detailed motivations and analyses of
this aspect are reported in Section V.

Validation strategy. To assess the capabilities of the machine
learning models, we adopted 10-Fold Cross Validation [86].
This methodology randomly partitions the data into 10 folds
of equal size, applying a stratified sampling (e.g., each fold
has the same proportion of code smell instances). A single
fold is used as test set, while the remaining ones are used as

training set. The process was repeated 10 times, using each
time a different fold as test set.
The result of the process described above consisted of a

confusion matrix for each code smell type, for each of the 125
releases of the considered projects and for each experimented
classifier. These matrices have been later analyzed to measure
the evaluation metrics described in the following section.

D. Data Analysis and Metrics

To assess the performance of the experimented detection
techniques we computed three well-known metrics [87], namely,
precision, recall and F-measure. In addition, we also computed
the Matthews Correlation Coefficient (MCC) [88]. Since we
considered several releases of several systems, we needed to
aggregate the results achieved for each release to have a clearer
overview of the performance [89]. Therefore, we aggregated
the obtained confusion matrices before computing precision,
recall, F-Measure, and MCC.

Formally, let TP (True Positives) be the actual smelly
instances that have been correctly identified as smelly by an
approach, FP (False Positives) the non-smelly instances that
have been erroneously identified as smelly, TN (True Negatives)
the non-smelly instances that have been correctly identified as
non-smelly, and FN (False Negatives) the smelly instances that
have been erroneously identified as non-smelly, we computed:

• Precision. It represents the fraction of instances predicted
as smelly that are actually smelly, namely:

Precision =

∑
i #TPi∑

i #(TPi + FPi)
% (1)

• Recall. represents the fraction of actually smelly instances
that have been correctly predicted as smelly:

Recall =

∑
i #TPi∑

i #(TPi + FNi)
% (2)

• F-measure. is defined as the weighted harmonic mean of
the precision and recall, and it is computed as:

F −Measure = 2 ∗ precision ∗ recall
precision+ recall

(3)

• MCC is a correlation coefficient between the observed and
predicted binary classifications. It has values in the range
[-1,+1] where a coefficient of +1 represents a perfect
prediction and 1 indicates total disagreement between
prediction and observation:



MCC =
∑

i #(TPi∗TNi−FPi∗FNi)∑
i #
√

(TPi+FPi)(TPi+FNi)(TNi+FPi)(TNi+FNi)
(4)

where i ranges over the entire dataset, including the releases
with no smelly instances. Aggregate metrics are more robust
than the mean, which is biased by the fact that datasets are
unbalanced for different smell types in terms of smelly and
non smelly instances (in some cases the datasets do not contain
any smelly instance).

As a final step, we statistically verified the differences
between the performance obtained by the experimented ap-
proaches. To this aim, we exploited the Mann-Whitney test
[90] computed on the distributions of MCC values of machine
learning-based and heuristic-based techniques over the different
releases and the different smell types. The results are intended
as statistically significant at α=0.05. Furthermore, we estimated
the magnitude of the measured differences by using Cliff’s
Delta (or d), a non-parametric effect size measure [91]
for ordinal data. We followed well-established guidelines to
interpret the effect size values: negligible for |d| < 0.10, small
for |d| < 0.33, medium for 0.33 ≤ |d| < 0.474, and large for
|d| ≥ 0.474 [91].

IV. ANALYSIS OF THE RESULTS

Table V shows the aggregate results for precision, recall,
F-measure, and MCC achieved by the machine learning model
(“NB” in the table) and DECOR. The overall results immediately
highlight that the performance of both the approaches is
generally low: indeed, the maximum F-measure is 41% and
44% for the NB and DECOR, respectively. This is especially
due to the extremely low precision achieved over the entire
dataset. More in detail, the high number of false positives
is likely influenced by the fact that the dataset contains
instances of different code smell types that sometimes have
characteristics that may bias the detection approaches. As an
example, let consider the cases of God Class and Complex
Class. While the detection rules for these smells are different,
it is reasonable to believe that some code metrics tend to
have a similar distributions in the classes affected by those
smells; for instance, being a God Class poorly cohesive and
with a large number of methods, it is likely that also the
complexity of the class tends to be high. This is the case
of taskdefs.optional.net.FTP of the APACHE ANT
1.6.0 system, that is a God Class but has WMC=39. Such a
value is not that high to make the class affected by Complex
Class too, but it is enough to confound the machine learning
technique, which wrongly signals the class as complex, thus
giving a false positive. This result seems to suggest that an
improved characterization of the symptoms behind specific code
smell types (e.g., by means of textual or historical analyses
[45], [46], [92]) may make code smell detection more effective.

It is also worth to discuss the values achieved when
considering the recall. In this case, we observed that DECOR is
superior to NB in most cases: this confirms the experimental
results obtained by the original authors [27] on the high recall
of the approach. Finally, the low MCC values of both the

approaches (see Figure 1) confirm that code metrics are not
enough when it turns to code smell detection [93], [94].

From a statistical point of view, Table VI reports the results
of the Mann-Whitney and Cliff’s delta tests computed on the
MCC values of the experimented approaches. As shown, the
difference between the techniques are statistically significant
in all cases (p−values lower than 0.05). With the exception of
God Class—where the machine learning model achieves higher
MCC—all the other cases show that DECOR is statistically
better than the baseline. Nevertheless, these differences are
mostly negligible or have at most a medium effect.

In the following subsections, we discuss the findings achieved
by considering each code smell independently and reporting
qualitative examples aimed at further analyzing the performance
of the detectors. Also, we discuss the complementarity between
the sets of code smells correctly identified by the detectors
(see VII), namely the extent to which NB and DECOR are able
to identify the same instances.

A. Results for God Class

Looking at the results in both Table V and Figure 1, we can
say that this smell is the easiest to detect and, in fact, all the
instances affected by this smell have been correctly classified
as smelly by at least one of the experimented techniques. In
particular, we note that DECOR reaches a recall of 100%,
which means that it is able to detect all God Class instances.
Nevertheless, the high recall has a cost in terms of precision,
that is just 8%. On the one hand, our findings are in line with
those reported in previous studies [27], [45]. On the other
hand, they confirm the need for further methodologies able to
improve metric-based code smell detection.

When considering the complementarity of the approaches
(Table VII), our results indicate a high overlap (85%): this
means that in the vast majority of cases NB and DECOR can
identify the same instances. However, a total of 74 actual
God Class cases, corresponding to 15%, were only correctly
identified by DECOR and missed by NB. To better understand
the reasons that enable the heuristic approach to discover
different instances than the machine learning model, we went
manually over the outputs of the techniques to conduct a manual
analysis. As a result, we found that in most cases the machine
learning model is biased because it considers all the metrics
together to make a prediction, while the heuristic approach can
logically combine them obtaining better results. As an example,
let consider the class CBZip2OutputStream belonging to
the project APACHE ANT 1.6.3: despite it is characterized by
an LCOM < 20 (i.e., 19), it respects the rule reported in Table
III, as it has an ELOC = 2346 and NOM+NOA = 161. As such,
the heuristic approach can still correctly identify its smelliness.
On the contrary, the machine learning model classifies the
instance as non-smelly.

B. Results for Spaghetti Code

As opposed to the previous case, this smell does not seem
to be easily detectable automatically, as demonstrated by the
results in Table VII, where we can see that more than half of



Table V
AGGREGATE RESULTS FOR PRECISION, RECALL, F-MEASURE, AND MCC

Precision Recall F-Measure MCC
NB DECOR NB DECOR NB DECOR NB DECOR

God Class 0.27 0.08 0.85 1 0.41 0.16 0.47 0.28
Spaghetti Code 0.15 0.11 0.30 0.47 0.20 0.18 0.20 0.22
Class Data Should Be Private 0.29 0.23 0.34 0.42 0.29 0.30 0.29 0.31
Complex Class 0.23 0.23 0.57 0.72 0.33 0.35 0.36 0.37
Long Method 0.15 0.57 0.56 0.37 0.23 0.44 0.30 0.42
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Figure 1. Boxplots representing the MCC values obtained by DECOR and NAIVE BAYESIAN (NB) for all the considered code smells

Table VI
COMPARISON BETWEEN NB AND DECOR IN TERMS OF MANN-WHITNEY

AND CLIFF’S DELTA EFFECT SIZES. SIGNIFICANT P-VALUES ARE
REPORTED IN BOLD FACE.

p-value d Meaning
God Class <0.01 0.13 Negligible
Spaghetti Code 0.01 -0.29 Small
Class Data Should Be Private <0.01 -0.43 Medium
Complex Class 0.01 -0.41 Medium
Long Method <0.01 -0.33 Small

the instances affected by this smell are not detected as smelly
by any of the approaches. Overall, the performance achieved
by the machine learning technique is extremely low, both in
terms of precision and recall (15% and 30%, respectively). At
the same time, DECOR has a higher recall (+17% with respect
to other technique), but a lower precision (-4%), which had
the effect to make the overall results of the two approaches
comparable (F-Measure for DECOR is just 2% lower than
NB, while MCC is 2% higher). Thus, we can claim that the
metric-based detection is not able to provide good results,
independently from the underlying technique adopted. Once
again, this may indicate the need for further work aimed at
improving the characterization of this smell type. Looking at
the complementarity, also in this case the overlap is higher
than the number of instances correctly detected by only one
of the two. However, in the remaining cases DECOR is able to
identify 266 code smell instances (18%) that are not correctly
detected by the machine learning model. For example, the

class MeridioAuthority of the APACHE INCUBATING 0.3
project is correctly detected only by DECOR. Basically, the
reason is exactly the same observed before: the value of the
ELOC metric of this class is 661, which is very close to the
threshold (i.e., 600). While the heuristic technique discriminates
based on thresholds, thus identifying the smelly class, the ML
approach might be confounded by borderline metric values.

C. Results for Class Data Should Be Private

As for this smell, half of the smelly instances are not
identified by any of the two techniques: this seems to be a clear
indication of the need for more effective detection strategies.
Between the two experimented techniques, DECOR is the one
with the highest recall and this allows it to be slightly better
than the machine learning model, overall. This is likely due to
the very simple, yet clearer, detection rule applied by DECOR
to identify instances of this smell. Conversely, the machine
learning model seems to be less stable both in terms of precision
and recall because it may be confounded by borderline values.
The results shown in Table VII confirm that the prediction
model can only identify a limited number of instances that are
not identified by DECOR (91), while in most cases there is an
overlap (298) or the heuristic approach works better (186).

D. Results for Complex Class

The detection rule for this smell is only based on WMC, so
the only factor that can determine different predictions is the
value of this metric. First, we can confirm the results discussed
so far, with DECOR having a high recall but a low precision.



Table VII
OVERLAP BETWEEN ML AND DECOR IN ABSOLUTE TERMS AND PERCENTAGES

NB \ DECOR NB ∩ DECOR DECOR \ NB NB ∪ DECOR ¬NB ∩ ¬DECOR
# % # % # % # % # %

God Class 0 0 435 85 74 15 509 100 0 0
Spaghetti Code 14 1 419 29 266 18 699 48 744 52
Class Data Should Be Private 91 8 298 26 186 16 575 50 575 50
Complex Class 50 8 329 49 155 23 534 80 135 20
Long Method 1577 33 1076 23 650 14 3303 70 1460 30

Moreover, the MCC of both the approaches is slightly in
favor of DECOR (0.37 vs 0.36), indicating that (i) there is not
a clear winner between the two and (ii) more sophisticated
techniques for the detection of this smell would be worthwhile.
The discussion of the overlap metrics is also very similar to the
other smells discussed above. In general, we observed that the
values that bring to an erroneous detection are the ones close
to the threshold boundaries. The impact of boundary values
can be also analyzed by another point of view. Let consider the
class ServerSession in the APACHE CASSANDRA 0.8.0
project, which shows a WMC = 47 that can be considered
high but does not exceed the threshold of 50. In this case, the
ML technique correctly detects the instance as smelly, while
DECOR cannot.

E. Results for Long Method

As for Long Method, this was the only case in which the
machine learning technique had higher recall than DECOR
(i.e., +19%). Also for this code smell, the differences between
the two approaches mainly concern instances with metric
values close to the thresholds used by DECOR. An example is
provided by the method doSnapshot belonging to the class
BlobStoreIndexShardGateway of the Elasticsearch
0.17.0 project. The method under considerations has 79 lines
of code and takes only 1 parameter. It is correctly detected by
the prediction model as smelly but not by DECOR because it
requires 100 or more lines of code and more than one parameter
to identify the smell.

V. DISCUSSION AND IMPLICATIONS

The results of of our study provided a number of insights
that deserve some further considerations.

A. On the Role of Data Balancing

As we discussed in Section III, we consciously chose to
not use balancing techniques when building our code smell
prediction model. This choice was due to experimental tests
where we compared the balanced version of the model with
the non-balanced one. As balancing algorithm, we applied
the SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUE,
(SMOTE) [85]: to ensure a similar proportion of elements
belonging to the two classes (i.e., smelly/non-smelly), it takes
samples of the feature space for each target class and its nearest
neighbours, and generates new examples that combine features
of the target case with features of its neighbours.

The results of this analysis are shown in Figure 2. At a first
sight, it may seem that the balanced model achieves better

performance for most of the considered smells (except the one
created for Long Method). However, by further investigating
this result we realized that such performance is biased by the
high number of cases in which the data balancing algorithm
failed, not producing any valid predictions. In particular, the
problem of code smell detection is strongly unbalanced and, in
many cases, SMOTE does not have a feature space large
enough to perform a balancing, thus producing a failure.
Such failures do not contribute to the computation of the
evaluation metrics used for performance assessment. As such,
the interpretation of the results would have been biased by the
absence of many predictions.

To further investigate this aspect, we tried to reduce the
failure rate by considering the default CLASS BALANCER
provided by WEKA: differently from SMOTE, it performs a
very simple balancing that has the goal of re-weighting the
instances in each class to obtain the same total class weight.
Thus, it theoretically reduces the number of failures as it does
not require a large feature space. As expected, the failure rate
was actually reduced but, however, the results (shown in Figure
2) showed lower performance than the ones produced by the
non-balanced model in most cases.

Thus, our findings have two clear implications for the
research community. First, the problem of code smell detection
is naturally unbalanced and, for this reason, difficult to treat with
machine learning techniques: as such, researchers interested
in this finding are called to devise novel effective strategies
to make machine learning really suitable for code smell
detection. Perhaps more importantly, the problem of code
smell prediction lends itself to possible interpretation bias:
thus, we advice researchers in the field to carefully analyze the
internal mechanisms of prediction models before interpreting
their goodness.

B. On the Performance of Heuristic Approaches

Likely, the most surprising result of our study concerns the
fairly low performance achieved by DECOR over the considered
dataset. Specifically, while the recall of the approach was in
line with the one stated in literature [27], we found its precision
to be extremely low. We see two main motivations behind this
result. First, in our study we employed DECOR with a larger
variety of code smells with respect to previous work [45], [46],
[62]: therefore, we tested its performance in the wild, showing
some limitations of the technique when employed for the
detection of certain code smell types. Secondly, we relied on a
manually-validated dataset containing real instances: as shown
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Figure 2. Boxplots representing the MCC values obtained by NAIVE BAYESIAN trained applying different balancing strategies for all the considered code
smells

Table VIII
TYPE I AND TYPE II ERRORS ACHIEVED IN THE OVERALL EVALUATION

Naive Bayes Optimistic Constant Pessimistic Constant Random
Type I Type II Type I Type II Type I Type II Type I Type II

God Class 1,263 (0.90%) 65 (0.10%) 144,798 (99.60%) 0 (0.00%) 0 (0.00%) 509 (0.40%) 72,683 (50.00%) 251 (0.20%)
Spaghetti Code 2,269 (1.40%) 1,009 (0.60%) 159,436 (99.10%) 0 (0.00%) 0 (0.00%) 1,443 (0.90%) 79,669 (49.50%) 690 (0.40%)
Class Data Should Be Private 874 (0.60%) 770 (0.50%) 142,558 (99.20%) 0 (0.00%) 0 (0.00%) 1,150 (0.80%) 71,221 (49.50%) 589 (0.40%)
Complex Class 1,303 (1.00%) 282 (0.20%) 127,538 (99.50%) 0 (0.00%) 0 (0.00%) 669 (0.50%) 63,507 (49.50%) 335 (0.30%)
Long Method 15,449 (1.20%) 2,101 (0.20%) 1,283,312 (99.60%) 0 (0.00%) 0 (0.00%) 4,763 (0.40%) 641,914 (49.80%) 2,431 (0.20%)

by previous work [34], the composition of the dataset might
influence the performance of a technique; this is especially true
in the case of code smell detection, where a detector should
recognize code smells over datasets that are both unbalanced
(i.e., limited number of actual instances) and noisy (i.e., the
presence of several smell types might interfere and make the
detection rules less effective).

Thus, while heuristic techniques still slightly outperform
machine learning models, the problem of detecting code smells
using heuristics is still far from being solved. We believe that
our findings support the preliminary research efforts conducted
to filter code smell candidates output by the detectors to reduce
the false positive rate, thus improving their precision [95].
At the same time, we also envision further research on how
to limit the interaction of multiple code smells with similar
characteristics on the performance of code smell detectors: to
this aim, we envision the concept of local smell detection,
that, similarly to what has been done in defect prediction [96],
would have the goal of clustering similar classes first (possibly
positively affecting the interaction problem) and then apply
the detector that is most suitable for the classes of a cluster.

C. On the Performance of Machine Learning Models

As we have observed in Section IV, the performance of
machine learning techniques are not as good as the one of
heuristic approaches. To further investigate the potential of
these techniques, we performed an additional analysis aimed at
comparing the model with three simple baselines such as: (i)
the OPTIMISTIC CONSTANT classifier, that always classifies an

instance as smelly; (ii) the PESSIMISTIC CONSTANT classifier,
that always classifies an instance as non-smelly; and (iii) a
RANDOM classifier, which randomly classifies an instance as
smelly or non-smelly. Should the performance of the model
be lower than any of this baseline, it would indicate a major
threat to the usability of the model in practice. As previously
done in literature [97], we performed this comparison in terms
of Type I and Type II errors, i.e., computed as the total number
of false positive and false negative errors.

Table VIII reports the results achieved. We can observe that,
for each of the classifiers, the total number of errors (i.e., Type
I + Type II) is independent from the smell to detect. The total
number of errors in percentage is between 1% and 2% for
NAIVE BAYES, higher than 99% for OPTIMISTIC CONSTANT,
less than 1% for PESSIMISTIC CONSTANT and around 50%
for RANDOM CLASSIFIER. This means that the PESSIMISTIC
CONSTANT outperforms all the other classifiers producing a
lower number of errors.

Of course, this result was due again to the unbalanced nature
of the problem. However, this has a key implication for the
research community: based on our results, machine learning
seems still unsuitable for code smell detection. The inclusion
of orthogonal metrics as independent variables (e.g., process
indicators), the adoption of ensemble techniques [98], the
experimentation of different training strategies (e.g., cross-
project models) are just some of the research fields that would
require further attention in the future.



VI. THREATS TO VALIDITY

In this section we discuss the threats to construct, external
and conclusion validity of our empirical evaluation.

Construct Validity. Threats in this category are related to
the relation between theory and observation. In our study,
a threat might be represented by the dataset used for the
empirical study. The choice was made considering several
factors such as heterogeneity or the presence of manually-
validated data, however we have to consider that they may
contain possible incompleteness or imprecisions. Another threat
can be represented by the detection techniques adopted in the
study: on the one hand, we used DECOR [27], a tool that is
publicly available and that has been exploited several times
in the past [8]; on the other hand, the construction of the
machine learning model took into account several aspects that
might have possibly influenced the study, i.e., which features
to consider, how to train the classifier, etc. Thus, we believe
that the procedures followed in this respect are precise enough
to ensure the validity of the study.

External Validity. With respect to the generalizability of
our findings, we considered a large dataset consisting of 131
releases of 13 open source systems belonging to different ap-
plication domains and having different characteristics. Another
threat concerns the choice of the techniques for comparison:
we exploited NAIVE BAYES as machine learning classifier after
comparing the top five most commonly used classifiers in this
field [9]. Finally, the selection of the code smell to analyze
could be a threat. We selected five smells that represent a large
variety of design issues (e.g., smells related to complexity or
excessive coupling between objects). This allowed us to better
understand the potential of machine learning techniques for
code smell detection as well as their limitations with respect to
heuristic-based approaches. Of course, further experiments
performed on different datasets and techniques would be
desirable and already part of our future research agenda.

Conclusion Validity. As for concerns with the relationship
between treatment and outcome, we exploited a set of widely-
used metrics to evaluate the experimented techniques (i.e.,
precision, recall, F-measure, MCC) and provided qualitative
examples aimed at showing the differences between the com-
pared approaches. Furthermore, we used appropriate statistical
tests (i.e., Wilcoxon and Cliff’s delta) to support our findings.
As for the machine learning model, a possible bias related to the
interpretation of the results might have been due to the usage of
the 10-fold cross validation. This strategy randomly partitions
the set of data to create training and test sets: such randomness
might have possibly led to the creation of biased training/test
sets that have the consequence of under- or over-estimate the
model performance. To account for this aspect, we performed
an additional analysis: as suggested by Hall et al. [99], we ran
the experimented model multiple times to assess how stable it
is depending on the random splits performed by the validation
strategy. Thus, we ran a 10 times 10-fold cross validation and,
then, we measured the variability of the predictions performed
by the model; as a result, we observed that in 98% of the cases

the predictions do not change over different runs. As such, we
can conclude that the results achieved by the model are not
influenced by the randomness of the validation strategy.

VII. CONCLUSIONS

In this paper we compared a machine learning approach
with a heuristic one for code smell detection, considering five
different types of code smells over a dataset composed of
125 releases of 13 open source software systems. The main
contributions of this paper can be summarized as follow:

• A large-scale empirical comparison of machine learning
and heuristic approaches for metric-based code smell
detection, which highlighted that heuristic approaches
still perform better, yet have low performance.

• The identification of problems, such as data unbalancing or
poor precision, that make the application of both machine
learning models and heuristic approaches for code smell
detection hard;

• A comprehensive online appendix [79] that enables
replication and stimulates further research on the topic.

Our future work includes the comparison of machine
learning techniques with other heuristic approaches available
in literature, as well as the definition of novel methods to make
machine learning and heuristic approaches more effective.
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