
PANDORA: Continuous Mining Software
Repository and Dataset Generation

Hung Nguyen
Tampere University
Tampere, Finland

hung.nguyen@tuni.fi

Francesco Lomio
Tampere University
Tampere, Finland

francesco.lomio@tuni.fi

Fabiano Pecorelli
Tampere University
Tampere, Finland

fabiano.pecorelli@tuni.fi

Valentina Lenarduzzi
LUT University
Lathi, Finland

valentina.lenarduzzi@lut.fi

Abstract—During the mining software repository activities,
a huge amount of data gathered from different sources is
analyzed. Different tools have been developed for collecting and
aggregating data from repositories, but they do not easily allow
researchers to develop new extractors, to integrate the data
collected from other platforms, and in particular from platforms
that delete the data periodically. Moreover, mining software
repository studies are commonly performed on old versions of
software projects and their results are not commonly periodically
updated. As a result of the non-continuously updated studies,
practitioners often do not trust results from empirical studies. In
order to overcome the aforementioned issues, in this paper, we
present PANDORA, a tool that automatically and continuously
mines data from different existing tools and online platforms
and enables to run and continuously update the results of mining
software repository studies. To evaluate the applicability of our
tool, we currently analyzed 365 projects (developed in different
languages), continuously collecting data from December 2020
to May 2021 and running an example study, investigating the
build-stability of SonarQube rules.

Link to dashboard: http://sqa.rd.tuni.fi/superset/dashboard/1
Link to source code: https://github.com/clowee/PANDORA
Link to 5-minutes video: https://youtu.be/CuVO9YGJ59I

I. INTRODUCTION

Mining software repository (MSR) activity requires analyz-
ing a huge amount of data gathering from different sources
such as source code, version control systems, and issue
tracking systems [1], [2], [3]. The adaption of these tools
can be a valid and useful support to researchers during their
development activities, such as code reviews, testing, or code
quality evaluation.

Different online platforms are used to collect data from
software projects. GitHub1, Sourceforge2 and Jira3 are some
of the most commonly used platforms. Other platforms such as
SonarCloud4, BlackDuck5, CodeScene6 and many others eval-
uate different information on the project repositories. However,
in order to save disk space, they commonly delete the detailed
analysis results from their database after a short period of time,

1GitHub http://github.com
2https://sourceforge.net
3https://www.atlassian.com
4https://sonarcloud.io
5https://www.blackducksoftware.com
6https://codescene.io

making complex the analysis of the whole project history for
MSR researchers.

Different tools have been developed for collecting and
aggregating data from repositories. From databases aggre-
gating and collecting history of code repositories (e.g. The
SourceForge Research Data Archive [4], the GHArchive),
Issue trackers [5] but also tools for collecting and storing
multiple information on multiple platforms (e.g. Software
Heritage7 and OpenHub8 (formerly Ohoh)s).

However, all these platforms allow researchers to download
different types of data to be used in their studies, but do
not allow researchers to develop new extractors to integrate
the data collected from other platforms, and in particular to
platforms that delete the data periodically. Moreover, these
tools and do not allow researchers to continuously apply their
MSR approaches to the current version state of the software.
As a result, studies conducted a few years ago might be
outdated because of the new versions of the software analyzed
or because of the new version of the tools analyzing the
projects.

As an example, in 2020 we published two papers analyzing
the fault proneness of SonarQube9 issues [6], [7]. However,
both works were performed using a dataset collecting project
data from 2001 to 2015 and using an older version of Sonar-
Qube (version 7.4). Re-running the same study today, with the
most recent version of SonarQube (version 8.9LTS on June
2021) and on project data collected in the last year would
probably yield totally different results. The same might apply
to a large number of similar studies conducted in the last years.

As a result of the non-continuously updated studies, prac-
titioners often do not trust results from empirical studies,
especially because they are applied to old versions of the
projects or they are not easily replicable in their context.

In order to overcome to the aforementioned issues, in this
paper, we present PANDORA, a tool that automatically and
continuously mines data from different existing tools and
online platforms and enable to run and continuously update
the results of MSR studies.

In details, PANDORA provides different benefits to:

7https://www.softwareheritage.org
8OpenHub https://www.openhub.net
9SonarQube http://www.sonarqube.org



Fig. 1. PANDORA Overview

• Continuous Dataset Creation. PANDORA enables to con-
tinuously mine data from repositories (e.g. GitHub),
Issue trackers (e.g. Jira), and any online platform (e.g.
SonarCloud). Developers can add new plug-ins to develop
new connectors to collect data from any other platform
or standalone tool (e.g. PyDriller [8] and Checkstyle 10).

• Continuous application of custom statistical and machine
learning models. Researchers can upload their python
scripts to analyze the data and schedule a training fre-
quency for their prediction models (e.g. once a month).

• Simple and replicable data analysis approach. Re-
searchers do not need to know how to mine the data,
but they can simply use them.

• Data Visualization. Dashboard for visualizing the results
of the study

• Dataset export for offline usage. Data scientist and soft-
ware engineers can easily download the last version of
the dataset and use it for their empirical studies.

To evaluate the usefulness of our tool, we currently analyzed
365 projects (developed in different languages), continuously
collecting data from December 2020 to May 2021 and running
a toy-study, investigating the build-stability of SonarQube
rules.

How to access to PANDORA. PANDORA is available at11.
The complete dataset is downloadable at 12. Please, consider
that the dataset is automatically updated every three days.
Moreover, the source code is freely available in the PANDORA
project repository [9].

The remainder of this paper is structured as follows: Sec-
tion II describes the tool, while Section III presents and the
empirical validation of this tool. Section V depicts the roadmap
including the next steps and Section VI draws the conclusion
and highlights the future works.

10https://checkstyle.sourceforge.io
11http://sqa.rd.tuni.fi/superset/dashboard/1
12http://130.230.52.210/download

II. PANDORA

A. PANDORA Architecture

PANDORA is composed by four main components (Fig-
ure 1):

• Repository Mining: aimed at Extracting information
from the repository, Transforming and Loading it into the
database (ETL). The process is based on the ETL plugin
that can be either API based, or executed on the locally
cloned repositories.

• Data Analysis: enables to integrate data-analysis plugins
that will be executed in Apache Spark 13, each using a
specific methodology (Machine Learning/Statistical Anal-
ysis) to solve a specific task.

• Dashboard: visualization tool based on Apache Super-
set 14, used for inspecting and visualizing the data and
the results of the analysis performed in the Data Analysis
block.

• Scheduler: based on Apache AirFlow 15, aimed to in-
teract with the other blocks in order to schedule the
execution of (i) the repository mining, and (ii) the train-
ing/fitting of the models used in the Data Analysis block.

• Download Platform to enable the download of the
dataset collected.

Repository Mining. This component is aimed to Extract,
Transform, and Load (ETL) the information from multiple
sources, including online repositories, but also local cloned
repositories. In the current version, PANDORA we imple-
mented three ETL plug-ins, to extract data from APIs: Sonar-
Cloud16 using SonarQube17 APIs, Jenkins18, and GitHub19.

13 https://spark.apache.org
14 https://superset.apache.org
15 https://airflow.apache.org
16https://sonarcloud.io
17https://www.sonarqube.org
18https://www.jenkins.io
19https://github.com



Fig. 2. Sonarqube rules build stability considering two models - Chi Square Selector model (left) and Random Forest model (right).

We are planning to integrate locally executable tools such
as Pydriller [8] and SZZ algorithm [10].

The ETL process is composed of three steps:
• Step 1: Extract data from Software Repositories and

Platform (e.g. Jira and GitHub)
• Step 2: Transform the extracted data. In this step, we need

to carefully match the data obtained from each source
and merge them with the existing data in the database.
As an example, some sources will provide information
at the commit level. Therefore, we need to ensure to
save the data to the database using the correct commit
hash. Other types of data transformation are also needed,
including transforming dates (timezones, formats, ...), but
also aggregating data using compatible IDs (project id,
project version, commit hash, ...)

• Step 3: Load the data into the back-end database for
persistence (PostgreSQL), while making sure that the
fields in the tabular data are in an appropriate form.

Data Analysis. The data analysis process can be executed as
python script in Apache Spark13. Spark enables to execute
analysis on a distributed cluster and it is used to prepare
data, train, test and validate a range of Machine Learning and
statistical models. In case the models require training, it is
important to specify the training and inference interfaces, in
order to enable the scheduler to trigger the training activity
periodically.
Scheduler. The scheduler, based on Apache Airflow15, is a
fundamental component of PANDORA. It is responsible of
periodically triggering the plugins in the repository mining
and in the data analysis phase.

As an example, researchers might decide to analyze the data
monthly, to update their quality models monthly, re-training
them with the latest data.
Dashboard. The data visualization is performed with a highly
customizable dashboard. We adopted Apache Superset 14 for
this purpose. Superset gather data from the data analysis results
stored in the database.

Superset enables to create new pages, tabs and to add
different visualizations such as lists, histograms, pie-charts and
many other type of charts.

Paltform Download. The download platform is a simple
web platform that allows to download the dataset generated
up to the download date for offline usage. The results are
downloaded in csv format.

B. Customizability

One of the main caracteristics of PANDORA is its customiz-
ability. It is built in a way that it is possible to integrate
additional plug-ins with relatively little effort. At the moment
it is possible to easily add additional dataset, and to modify
the data analysis script (check with Hung). A step by step
guide on how to import additional datasets is available in the
project repository II More functionality and the possibility to
add new ETL will be added in the future.

III. PANDORA AT WORK: A CASE STUDY

In this section, we report the empirical validation of PAN-
DORA describing the study design and the obtained results.

A. Study Design

In this Section, we describe the study design including goal,
context, data collection, and data analysis.

Goal: The goal of this empirical study is to evaluate
PANDORA with the purpose of assessing its applicability
investigating a toy study. The focus of the toy study is to
evaluate the build-stability of SonarQube rules.

Context: We analyzed all the projects of the Apache Soft-
ware Foundation20 officially using SonarCloud16 and Jenkins18

including 365 projects.
Data Collection: PANDORA automatically-collected data

from SonarCloud, Jenkins, and GitHub for all the Apache
Software Foundation projects (365 projects, developed in
different languages). For this example study, we considered
data collected from September 2020 to May 2021. The Apache
Software Foundation page of SonarCloud lists all the projects
that officially adopt it21.

Data Analysis: We adopted a design similar to [6] com-
paring three common machine learning classifiers to find the

20https://www.apache.org
21Apache Software Foundation projects @Sonarcloud https://sonarcloud.

io/organizations/apache/projects



TABLE I
COMPARISON BETWEEN THE STATE-OF-THE-ART TOOLS SUPPORTING MINING SOFTWARE REPOSITORIES. OUR WORK IS REPORTED IN BOLD.

Authors Tool Name Scope Target Stage
Gousios [11] GHTorent Repositories characteristics Data Mining
Sokol et al. [12] MetricMiner Repositories characteristics + Code Metrics Data Mining + Dashboard
Spadini et al. [8] PyDriller Repositories characteristics + Historical analysis Data Mining
Dueñas et al. [13] GrimoireLab Process metrics Data Mining + Dashboard
Nguyen et al. PANDORA Customizable Data Mining + Data Analysis + Dashboard

SonarQube issues (independent variable) that affect the build
stability (dependent variable), by classifying build stability as
successful or not.

The models chosen are Logistic Regression [14], Decision
Tree [15] and the Random Forest model [16].

We trained the three classifiers using 80% of the dataset
and we validated them using the remaining 20%. We evaluate
the accuracy of the models using considering the Receiver
Operating Characteristic and its Area Under the Curve (AUC-
ROC) and the F-measure, and we finally selected the classifier
that provides the highest overall accuracy. For the purpose of
the evaluation, the system is configured to train the model once
a day considering the data of the last 12 months. However, the
system can be configured to train the models less often (e.g.
once a month).

B. Validation Results

The best performing model, considering all the metrics, is
the Random Forest, with an AUC-ROC of 93.53% and F-
measure of 67.53%. The random forest was therefore used
to find which issues affect the build stability. The classifier
automatically calculates the importance of the features it is
using for the prediction, therefore we took the feature selected
by the random forest itself. In order to validate the results, we
also calculated the issues affecting build stability through a
Chi Square Selector model. The results of the two models can
be found in Figure 2.

The results obtained with the two models are similar to each
other. The issues considered responsible for the build quality
were therefore selected from the issues found responsible from
both the models. In total 8 rules were found to affect the build
stability according to both the random forest model and the
Chi Square Selector model.

It is interesting to note that the SonarQube rules list that
affects the build stability change significantly if considering
older data. This confirms that the results of quality models
might change over time, and therefore need a continuous
approach to train the data periodically and to learn from
developers.

The training was executed every three days from September
2020 up to now, considering the data of the previous 12
months. It is interesting to see that the training of such a
large amount of data on a distributed Apache Spark cluster
usually takes no more than 4 hours. However, we are planning
to increase the time between training sessions as soon as we
will add more plug-ins. The results of this study show that it
is possible to continuously collect and update MSR studies,

enabling researchers and practitioners to easily keep track of
the changes.

IV. RELATED WORK

Over the last years, researchers have devoted significant
effort to developing publicly accessible tools to support mining
software repositories studies. This section reports and dis-
cusses some of the most used and best-known tools supporting
data mining and data analysis, along with highlighting the
main differences between such tools and PANDORA. A quick
summary of the main differences can be found in Table I.

Gousios [11] presented GHTorent, a mirror of GitHub
providing queriable data about repositories hosted on GitHub,
e.g., pull requests, issues, etc. Differently from PANDORA,
GHTorent only provides support for data mining with a
specific focus on repository-related information.

Sokol et al. [12] presented MetricMiner, a web application
providing support to mining software repository studies with
features for the automatic clone and metric extraction from Git
and SVN repositories. MetricMiner also provides the opportu-
nity of visualizing data in a dashboard and performing some
statistical calculations by means of R scripts that are automat-
ically written and executed. The main differences between this
tool and PANDORA lie in the fact that (i) PANDORA is able to
extract a wider set of metrics, and PANDORA also integrates a
customizable Data Analysis component useful to run Machine
Learning and other sophisticated statistical models. Moreover,
according to the links provided in the original publication,
MetricMiner seems to be no longer available and maintained.

Later on, Spadini et al. [8] released PyDriller, a Python
Framework that supports mining historical and repository-
related information on Git repositories. PyDriller only focuses
on data mining without providing support for data analysis
and data visualization.

Finally, GrimoireLab, by Dueñas et al. [13], is a toolset
integrating modules to retrieve process-related information
from multiple types of software repositories. It also provides a
dashboard for the interactive visualization of the data retrieved.
This tool only focuses on data mining and data visualization,
without providing support for data analysis.

With respect to the aforementioned tools, PANDORA differs
for its customizable nature, which allows users to tailor their
own experiments as they prefer, as well as for providing
support at all the mining software repository process stages.

V. ROADMAP

We are planning to continue the development of PANDORA,
to make it accessible to as many researchers as possible.



The next planned activities are:
• Development of new Repository Mining plugins. We are

actively working on the integration of SZZ, PyDriller and
Spotbugs22. Moreover, we are also planning the integra-
tion of issue tracking systems, including Jira, BugZilla
and GitHub Issues.

• Development of data analysis snippets to easily develop
new plug-ins using the most common data analysis tech-
niques

• Development of a simpler installation process, based on
Infrastructure as a code, and including a cloud-based
installation script to enable researchers to install the
platform on amazon AWS.

• Validation of the tool with an in-vivo assessment in-
volving real researchers working in the field of Mining
Software Repositories. We plan to perform a twofold
validation: on the one hand, we aim at evaluating PAN-
DORA’s features and their ease of use by means of a
task simulating the entire MSR process on the tool; on
the other hand, we plan to ask participants to plug-in their
own components into the different pipeline steps in order
to assess PANDORA’s customizability.

We are also planning to publish all the results of our
empirical studies on PANDORA, so as to show how the results
might change over time.

VI. CONCLUSION AND FUTURE WORK

This paper introduces PANDORA an extensible mining soft-
ware repository platform to continuously extract data from
software repositories and continuously update the result of
empirical studies.

PANDORA enables researchers to concentrate on the data
analysis phase, relying on common dataset of data continu-
ously collected by PANDORA. Moreover, PANDORA enables
practitioners to see the most updated results of empirical
studies, and also to apply them on their code.

PANDORA has currently a limited amount of plug-ins.
However, new plug-ins will be developed by our team in
the near future, and other researchers might contribute too to
the development of other plugins, enriching the platform and
enabling more stakeholders to access to their results thanks to
a graphical and continuously updated dashboard.

REFERENCES

[1] K. Chaturvedi, V. Sing, and P. Singh, “Tools in mining software
repositories,” in Int. Conf. on Computational Science and Applications,
2013.

[2] F. Z. Sokol, M. F. Aniche, and M. A. Gerosa, “Metricminer: Supporting
researchers in mining software repositories,” in Int. Working Conference
on Source Code Analysis and Manipulation, 2013, pp. 142–146.

[3] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deursen,
“Mining software repositories to study co-evolution of production test
code,” in International Conference on Software Testing, Verification, and
Validation, 2008, pp. 220–229.

[4] M. Van Antwerp and G. Madey, “Advances in the sourceforge research
data archive,” in Workshop on Public Data about Software Development
(WoPDaSD), 2008, pp. 1–6.

22SpotBugs https://spotbugs.github.io

[5] M. Ortu, G. Destefanis, B. Adams, A. Murgia, M. Marchesi, and
R. Tonelli, “The jira repository dataset: Understanding social aspects of
software development,” in International conference on predictive models
and data analytics in software engineering, 2015, pp. 1–4.

[6] V. Lenarduzzi, F. Lomio, and H. Huttunen, “Are sonarqube rules induc-
ing bugs?” in International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2020.

[7] V. Lenarduzzi, N. Saarimäki, and D. Taibi, “Some sonarqube issues
have a significant but small effect on faults and changes. a large-scale
empirical study,” Journal of Systems and Software, vol. 170, 2020.

[8] D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller: Python framework
for mining software repositories,” in European Software Engineering
Conference on the Foundations of Software Engineering, 2018.

[9] H. Nguyen, F. Lomio, and V. Lenarduzzi, “Pandora github repository,”
https://github.com/clowee/PANDORA, 2021.

[10] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5, May 2005.

[11] G. Gousios, “The ghtorent dataset and tool suite,” in Working Conference
on Mining Software Repositories (MSR), 2013, pp. 233–236.

[12] F. Z. Sokol, M. F. Aniche, and M. A. Gerosa, “Metricminer: Supporting
researchers in mining software repositories,” in International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2013,
pp. 142–146.

[13] S. Dueñas, V. Cosentino, J. M. Gonzalez-Barahona, A. del Castillo
San Felix, D. Izquierdo-Cortazar, L. Cañas-Dı́az, and A. Pérez Garcı́a-
Plaza, “Grimoirelab: A toolset for software development analytics,”
vol. 7, no. e601. [Online]. Available: https://doi.org/10.7717/peerj-cs.601

[14] D. R. Cox, “The regression analysis of binary sequences,” Journal of
the Royal Statistical Society. Series B, vol. 20, no. 2, 1958.

[15] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen, Classification and
regression trees Regression trees. Chapman and Hall, 1984.

[16] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.


