
Test-Related Factors and Post-release Defects: An Empirical
Study

Fabiano Pecorelli

University of Salerno

Italy

fpecorelli@unisa.it

ABSTRACT
Testing is a very important activity whose purpose is to ensure soft-

ware quality. Recent studies have studied the effects of test-related

factors (e.g., code coverage) on software code quality, showing that

they have good predictive power on post-release defects. Despite

these studies demonstrated the existence of a relation between test-

related factors and software code quality, they considered different

factors separately. That led us to conduct an additional empiri-

cal study in which we considered these factors all together. The

key findings of the study show that, while post-release defects

are strongly related to process and code metrics of the production

classes, test-related factors have a limited prediction impact.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Software Testing, Post-release Defects, Empirical Study

ACM Reference Format:
Fabiano Pecorelli. 2019. Test-Related Factors and Post-release Defects: An

Empirical Study. In Proceedings of the 27th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM, New

York, NY, USA, 3 pages. https://doi.org/10.1145/3338906.3342500

1 RESEARCH PROBLEM AND MOTIVATION
Software systems are constantly subject to continuous changes. In

order to check whether a change introduces one or more defects

[13], developers rely on software testing that represent an effective

defense weapon against the introduction of defects [8].

Many past studies investigated the properties that make test code

more effective [1, 2, 9, 10] and demonstrated that test code quality

strongly impacts the number of post-release defects contained in

the exercised classes [2, 6].

However, we identified some common limitations in the previous

work: first, all these studies analyzed the impact of several test-

related factors in isolation, without controlling for other test-related

factors, neither for additional control variables related to production

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5572-8/19/08.

https://doi.org/10.1145/3338906.3342500

code (e.g., product or process metrics [11], [12]). So, it is still unclear

how putting all these findings together in a single statistical model

will affect the previously identified results.

The goal of the study is to address these limitations by building

a more reliable statistical model that is able to describe the real

effects of test-related factors on post-release defects.

2 BACKGROUND AND RELATEDWORK
In the last decade, a number of researchers focused their studies

on assessing the defect-proneness of source code considering test-

related factors to describe the number of future defects in a system.

Nagappan et al. [11] used the STREW-J metric suite [9] to find a

relation between in-process testing metrics and software quality.

The results, later confirmed by Rafique and Misic [12] showed a

significant influence of the effort invested into testing on code

quality. Other studies found an influence of test effort and test-

driven development on product quality [10, 19] based on other

testing metrics such as code coverage [1, 2, 10] and other static

metrics (e.g., number of assertions) [11]. Kudrjavets et al. [7] showed

the existence of a high correlation between assertion density and

defect-proneness of production code, while Chen and Wong [2]

used code coverage for software failures prediction and showed

that this metric influences code quality. Later, Cai and Lyu [1]

confirmed this result. Nevertheless, a recent work by Kochhar et

al. [6] contradicted those findings, reporting that coverage has an

insignificant correlation with the number of post-release defects.

Finally, Spadini et al. [17] studied the relation between test smells

and post-release defects, finding that production classes exercised

by smelly test suites are more defect-prone.

3 APPROACH AND UNIQUENESS
Many Software Engineering research papers investigated the re-

lation between testing and software quality. However, all these

studies only considered the effects of a limited set of test-related

factors, without combining them and without considering the ef-

fects of some other control variables (e.g., size of the production

class). The goal of this study is to assess the impact of these factors

on the quality of software code when considered all together. The

details of the statistical model are reported below.

Dependent variable Since many previous studies on this topic

rely on post-release defects to describe software code quality, we

used it as our dependent variable. We calculate it by performing

the following steps:

• For each system, we identified the bug-fixing commits analyz-

ing the commit messages as proposed by Fischer et al. [3];

https://doi.org/10.1145/3338906.3342500
https://doi.org/10.1145/3338906.3342500

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Fabiano Pecorelli

Table 1: Set of variables used in the experiment

Group Name Description

Independent Variables

T-LOC Number of lines of code of the Test Class

T-WMC Weighted Method Count of the Test

Class

T-EC Efferent coupling of the Test class

Assertion Density Percentage of assertion statements in

the test code (i.e., number of assertions

/ T_LOC)

Assertion Roulette A value indicating if a test contains sev-

eral assertions with no explanation

Eager Test A value indicating if a test method tests

more methods of the production target

Resource Optimism A value indicating if a test makes opti-

mistic assumptions on the existence of

external resources

Line Coverage Number of statement in production

class that are covered by the test

Mutation Coverage Number of mutated statement in pro-

duction class that are covered by the

test

Control Variables

LOC Number of lines of code of the Produc-

tion Class

WMC Weighted Method Count of the Produc-

tion Class

EC Efferent coupling of the Production

class

pre-release changes Number of changes affecting a class

prior to the selected release

pre-release defects Number of defects affecting a class prior

to the selected release

• For each bug-fixing commit we used a function included in Py-

Driller [16], named get_commits_last_modified_lines,
that exploits the SZZ algorithm to determine the set of defect-

inducing commits.

• For each release of a system, we calculated post-release de-

fects as the number of defect-inducing commits in the period

between the selected release and its subsequent release.

Control Variables Besides considering test-related factors, we

also included a set of well-known metrics as control factors (see

Table 1) in order to avoid a biased interpretation of the results.

Independent Variables In order to select the independent vari-

ables, we analyzed a huge set of previous studies in literature in

order to search for test related factors influencing the quality of

software code. As a result, we obtained a large set of variables de-

scribing both static qualities (e.g., assertion density), the dynamic

behavior (e.g., line coverage), and the presence of test smell (e.g.,

Eager Test). Table 1 reports the complete list of variables.

Statistical Modelling and Data Analysis After collecting data

for all the considered projects, we built a statistical model relating

the independent and control variables to the post-release defects

relying on a Multiple Linear Regression model [14]. To verify its

assumption, we executed the Shapiro-Wilk normality test [15]

to verify the normality of the distribution and a hierarchical

clustering based on the Spearman’s rank correlation coefficient

[18], removing variables having a correlation higher than 0.6

with any other variable, to deal with multicollinearity.

4 RESULTS AND CONTRIBUTIONS
We performed a preliminary evaluation on three software systems

belonging to the Apache family: commons-io, commons-lang, and

commons-math.

Table 2: Results table - The impact of test-related factors on
the number of post-release defects.

Estimate S.E. Sig.
Intercept -0.1082 0.1047

Line Coverage 0.1185 0.0947

T-LOC -0.0000 0.0002

Assertion Density 0.1567 0.1869

Assertion Roulette -0.1475 0.0792 .

Eager Test -0.1123 0.0565 *

ResourceOptimism 0.0893 0.5284

LOC 0.0008 0.0001 ***

Pre-Release Changes 0.0022 0.0057

Pre-Release Defects 0.0642 0.0106 ***

Multiple R-squared: 0.369; Adjusted R-squared: 0.355

significance codes: ’***’p <0.001, ’**’p <0.01, ’*’p <0.05, ’.’p <0.1

The preliminary results (see Table 2) show that software code

quality is not strongly influenced by test-related factors.

The variables that highly affect software quality are loc and

pre-release defects that confirm the findings of previous studies.

Just as large classes are more defect-prone than the other [20], the

past fault history also affects the number of future defects [4, 5].

The only two significant factors related to tests are assertion

roulette and eager test. The former is a test smell describing test

classes having a large number of assertions without documentation,

while the latter describes a test method exercising more than one

production method. Despite the presence of test smells is an indica-

tor of poor quality of test code, in this case, it increases the quality

of production code. Indeed in both cases, the Estimate value is nega-

tive, which means that the higher the number of Assertion Density

and Eager Test, the lower the number of Post-release defects. In

the first case, it is correct to think that a high number of assertions

(documented or not) makes tests more robust. Also in the case of

Eager Test, having test method exercising more than one method

can help the early identification of defects and consequently reduce

the number of future defects.

The main surprising outcome of our study is that most of the

considered test-related factors are not able to explain post-release

defects. Despite this could seem strange, a possible reason is that,

while good quality tests are likely to accurately identify defects

present in the same snapshot of the production code, they do not

necessarily predict the future defects affecting the class under test.

The major contributions provided by this paper are the following:

• The inclusion of control variables related to the structure

(e.g., LOC) or to the past history (e.g., Pre-Release-Defects)

of production code overshadows the effects of test-related

factors on the prediction of post-release defects.

• Test-related factors commonly known and used in litera-

ture could be not appropriate enough to catch the defect-

proneness of the exercised code. Proposing new metrics able

to describe the relation between tests and software quality

could be an interesting cue for future works.

Test-Related Factors and Post-release Defects: An Empirical Study ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] Xia Cai andMichael R Lyu. 2007. Software reliability modeling with test coverage:

Experimentation and measurement with a fault-tolerant software project. In The
18th IEEE International Symposium on Software Reliability (ISSRE’07). IEEE, 17–26.

[2] M-H Chen, Michael R Lyu, and W Eric Wong. 2001. Effect of code coverage on

software reliability measurement. IEEE Transactions on reliability 50, 2 (2001),

165–170.

[3] Michael Fischer, Martin Pinzger, and Harald Gall. 2003. Populating a release

history database from version control and bug tracking systems. In Software
Maintenance, 2003. ICSM 2003. Proceedings. International Conference on. IEEE,
23–32.

[4] Todd L Graves, Alan F Karr, James S Marron, and Harvey Siy. 2000. Predicting

fault incidence using software change history. IEEE Transactions on software
engineering 26, 7 (2000), 653–661.

[5] Sunghun Kim, Thomas Zimmermann, E James Whitehead Jr, and Andreas Zeller.

2007. Predicting faults from cached history. In Proceedings of the 29th international
conference on Software Engineering. IEEE Computer Society, 489–498.

[6] Pavneet Singh Kochhar, David Lo, Julia Lawall, and Nachiappan Nagappan. 2017.

Code coverage and postrelease defects: A large-scale study on open source

projects. IEEE Transactions on Reliability 66, 4 (2017), 1213–1228.

[7] Gunnar Kudrjavets, Nachiappan Nagappan, and Thomas Ball. 2006. Assessing the

relationship between software assertions and faults: An empirical investigation.

In 2006 17th International Symposium on Software Reliability Engineering. IEEE,
204–212.

[8] Meir M Lehman, Juan F Ramil, Paul D Wernick, Dewayne E Perry, and Wladys-

law M Turski. 1997. Metrics and laws of software evolution-the nineties view. In

Proceedings Fourth International Software Metrics Symposium. IEEE, 20–32.

[9] Nachiappan Nagappan et al. 2005. A software testing and reliability early warning

(strew) metric suite. (2005).

[10] Nachiappan Nagappan, E Michael Maximilien, Thirumalesh Bhat, and Laurie

Williams. 2008. Realizing quality improvement through test driven development:

results and experiences of four industrial teams. Empirical Software Engineering
13, 3 (2008), 289–302.

[11] Nachiappan Nagappan, Laurie Williams, Mladen Vouk, and Jason Osborne. 2005.

Early estimation of software quality using in-process testing metrics: a controlled

case study. In ACM SIGSOFT Software Engineering Notes, Vol. 30. ACM, 1–7.

[12] Yahya Rafique and Vojislav B Mišić. 2013. The effects of test-driven development

on external quality and productivity: A meta-analysis. IEEE Transactions on
Software Engineering 39, 6 (2013), 835–856.

[13] Gregorio Robles, Juan Jose Amor, Jesus M Gonzalez-Barahona, and Israel Herraiz.

2005. Evolution and growth in large libre software projects. In Eighth International
Workshop on Principles of Software Evolution (IWPSE’05). IEEE, 165–174.

[14] George AF Seber and Alan J Lee. 2012. Linear regression analysis. Vol. 329. John
Wiley & Sons.

[15] Samuel Sanford Shapiro and Martin B Wilk. 1965. An analysis of variance test

for normality (complete samples). Biometrika 52, 3/4 (1965), 591–611.
[16] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. PyDriller: Python

Framework for Mining Software Repositories. https://doi.org/10.1145/3236024.

3264598

[17] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Alberto

Bacchelli. 2018. On the relation of test smells to software code quality. In 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 1–12.

[18] Charles Spearman. 1904. The proof and measurement of association between

two things. American journal of Psychology 15, 1 (1904), 72–101.

[19] Jaymie Strecker and Atif M Memon. 2012. Accounting for defect characteristics

in evaluations of testing techniques. ACM Transactions on Software Engineering
and Methodology (TOSEM) 21, 3 (2012), 17.

[20] Hongyu Zhang. 2009. An investigation of the relationships between lines of code

and defects. In 2009 IEEE International Conference on Software Maintenance. IEEE,
274–283.

https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3236024.3264598

	Abstract
	1 Research problem and motivation
	2 Background and related work
	3 Approach and uniqueness
	4 Results and contributions
	References

