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ABSTRACT
Testing is a very important activity whose purpose is to ensure soft-

ware quality. Recent studies have studied the effects of test-related

factors (e.g., code coverage) on software code quality, showing that

they have good predictive power on post-release defects. Despite

these studies demonstrated the existence of a relation between test-

related factors and software code quality, they considered different

factors separately. That led us to conduct an additional empiri-

cal study in which we considered these factors all together. The

key findings of the study show that, while post-release defects

are strongly related to process and code metrics of the production

classes, test-related factors have a limited prediction impact.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
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1 RESEARCH PROBLEM AND MOTIVATION
Software systems are constantly subject to continuous changes. In

order to check whether a change introduces one or more defects

[13], developers rely on software testing that represent an effective

defense weapon against the introduction of defects [8].

Many past studies investigated the properties that make test code

more effective [1, 2, 9, 10] and demonstrated that test code quality

strongly impacts the number of post-release defects contained in

the exercised classes [2, 6].

However, we identified some common limitations in the previous

work: first, all these studies analyzed the impact of several test-

related factors in isolation, without controlling for other test-related

factors, neither for additional control variables related to production
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code (e.g., product or process metrics [11], [12]). So, it is still unclear

how putting all these findings together in a single statistical model

will affect the previously identified results.

The goal of the study is to address these limitations by building

a more reliable statistical model that is able to describe the real

effects of test-related factors on post-release defects.

2 BACKGROUND AND RELATEDWORK
In the last decade, a number of researchers focused their studies

on assessing the defect-proneness of source code considering test-

related factors to describe the number of future defects in a system.

Nagappan et al. [11] used the STREW-J metric suite [9] to find a

relation between in-process testing metrics and software quality.

The results, later confirmed by Rafique and Misic [12] showed a

significant influence of the effort invested into testing on code

quality. Other studies found an influence of test effort and test-

driven development on product quality [10, 19] based on other

testing metrics such as code coverage [1, 2, 10] and other static

metrics (e.g., number of assertions) [11]. Kudrjavets et al. [7] showed

the existence of a high correlation between assertion density and

defect-proneness of production code, while Chen and Wong [2]

used code coverage for software failures prediction and showed

that this metric influences code quality. Later, Cai and Lyu [1]

confirmed this result. Nevertheless, a recent work by Kochhar et

al. [6] contradicted those findings, reporting that coverage has an

insignificant correlation with the number of post-release defects.

Finally, Spadini et al. [17] studied the relation between test smells

and post-release defects, finding that production classes exercised

by smelly test suites are more defect-prone.

3 APPROACH AND UNIQUENESS
Many Software Engineering research papers investigated the re-

lation between testing and software quality. However, all these

studies only considered the effects of a limited set of test-related

factors, without combining them and without considering the ef-

fects of some other control variables (e.g., size of the production

class). The goal of this study is to assess the impact of these factors

on the quality of software code when considered all together. The

details of the statistical model are reported below.

Dependent variable Since many previous studies on this topic

rely on post-release defects to describe software code quality, we

used it as our dependent variable. We calculate it by performing

the following steps:

• For each system, we identified the bug-fixing commits analyz-

ing the commit messages as proposed by Fischer et al. [3];
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Table 1: Set of variables used in the experiment

Group Name Description

Independent Variables

T-LOC Number of lines of code of the Test Class

T-WMC Weighted Method Count of the Test

Class

T-EC Efferent coupling of the Test class

Assertion Density Percentage of assertion statements in

the test code (i.e., number of assertions

/ T_LOC)

Assertion Roulette A value indicating if a test contains sev-

eral assertions with no explanation

Eager Test A value indicating if a test method tests

more methods of the production target

Resource Optimism A value indicating if a test makes opti-

mistic assumptions on the existence of

external resources

Line Coverage Number of statement in production

class that are covered by the test

Mutation Coverage Number of mutated statement in pro-

duction class that are covered by the

test

Control Variables

LOC Number of lines of code of the Produc-

tion Class

WMC Weighted Method Count of the Produc-

tion Class

EC Efferent coupling of the Production

class

pre-release changes Number of changes affecting a class

prior to the selected release

pre-release defects Number of defects affecting a class prior

to the selected release

• For each bug-fixing commit we used a function included in Py-

Driller [16], named get_commits_last_modified_lines,
that exploits the SZZ algorithm to determine the set of defect-

inducing commits.

• For each release of a system, we calculated post-release de-

fects as the number of defect-inducing commits in the period

between the selected release and its subsequent release.

Control Variables Besides considering test-related factors, we

also included a set of well-known metrics as control factors (see

Table 1) in order to avoid a biased interpretation of the results.

Independent Variables In order to select the independent vari-

ables, we analyzed a huge set of previous studies in literature in

order to search for test related factors influencing the quality of

software code. As a result, we obtained a large set of variables de-

scribing both static qualities (e.g., assertion density), the dynamic

behavior (e.g., line coverage), and the presence of test smell (e.g.,

Eager Test). Table 1 reports the complete list of variables.

Statistical Modelling and Data Analysis After collecting data

for all the considered projects, we built a statistical model relating

the independent and control variables to the post-release defects

relying on a Multiple Linear Regression model [14]. To verify its

assumption, we executed the Shapiro-Wilk normality test [15]

to verify the normality of the distribution and a hierarchical

clustering based on the Spearman’s rank correlation coefficient

[18], removing variables having a correlation higher than 0.6

with any other variable, to deal with multicollinearity.

4 RESULTS AND CONTRIBUTIONS
We performed a preliminary evaluation on three software systems

belonging to the Apache family: commons-io, commons-lang, and

commons-math.

Table 2: Results table - The impact of test-related factors on
the number of post-release defects.

Estimate S.E. Sig.
Intercept -0.1082 0.1047

Line Coverage 0.1185 0.0947

T-LOC -0.0000 0.0002

Assertion Density 0.1567 0.1869

Assertion Roulette -0.1475 0.0792 .

Eager Test -0.1123 0.0565 *

ResourceOptimism 0.0893 0.5284

LOC 0.0008 0.0001 ***

Pre-Release Changes 0.0022 0.0057

Pre-Release Defects 0.0642 0.0106 ***

Multiple R-squared: 0.369; Adjusted R-squared: 0.355

significance codes: ’***’p <0.001, ’**’p <0.01, ’*’p <0.05, ’.’p <0.1

The preliminary results (see Table 2) show that software code

quality is not strongly influenced by test-related factors.

The variables that highly affect software quality are loc and

pre-release defects that confirm the findings of previous studies.

Just as large classes are more defect-prone than the other [20], the

past fault history also affects the number of future defects [4, 5].

The only two significant factors related to tests are assertion

roulette and eager test. The former is a test smell describing test

classes having a large number of assertions without documentation,

while the latter describes a test method exercising more than one

production method. Despite the presence of test smells is an indica-

tor of poor quality of test code, in this case, it increases the quality

of production code. Indeed in both cases, the Estimate value is nega-

tive, which means that the higher the number of Assertion Density

and Eager Test, the lower the number of Post-release defects. In

the first case, it is correct to think that a high number of assertions

(documented or not) makes tests more robust. Also in the case of

Eager Test, having test method exercising more than one method

can help the early identification of defects and consequently reduce

the number of future defects.

The main surprising outcome of our study is that most of the

considered test-related factors are not able to explain post-release

defects. Despite this could seem strange, a possible reason is that,

while good quality tests are likely to accurately identify defects

present in the same snapshot of the production code, they do not

necessarily predict the future defects affecting the class under test.

The major contributions provided by this paper are the following:

• The inclusion of control variables related to the structure

(e.g., LOC) or to the past history (e.g., Pre-Release-Defects)

of production code overshadows the effects of test-related

factors on the prediction of post-release defects.

• Test-related factors commonly known and used in litera-

ture could be not appropriate enough to catch the defect-

proneness of the exercised code. Proposing new metrics able

to describe the relation between tests and software quality

could be an interesting cue for future works.
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