
Refactoring Android-specific Energy Smells:
A Plugin for Android Studio

Emanuele Iannone
SeSa Lab - University of Salerno

Fisciano (SA), Italy
e.iannone16@studenti.unisa.it

Fabiano Pecorelli
SeSa Lab - University of Salerno

Fisciano (SA), Italy
fpecorelli@unisa.it

Dario Di Nucci
JADE Lab - University of

Tilburg/JADS
’s-Hertogenbosch, The Netherlands

d.dinucci@uvt.nl

Fabio Palomba
SeSa Lab - University of Salerno

Fisciano (SA), Italy
fpalomba@unisa.it

Andrea De Lucia
SeSa Lab - University of Salerno

Fisciano (SA), Italy
adelucia@unisa.it

ABSTRACT

Mobile applications are major means to perform daily actions, in-
cluding social and emergency connectivity. However, their usability
is threatened by energy consumption that may be impacted by code
smells i.e., symptoms of bad implementation and design practices. In
particular, researchers derived a set of mobile-specific code smells
resulting in increased energy consumption of mobile apps and re-
moving such smells through refactoring can mitigate the problem.
In this paper, we extend and revise aDoctor, a tool that we previ-
ously implemented to identify energy-related smells. On the one
hand, we present and implement automated refactoring solutions
to those smells. On the other hand, we make the tool completely
open-source and available in Android Studio as a plugin pub-
lished in the official store. The video showing the tool in action is
available at: https://www.youtube.com/watch?v=1c2EhVXiKis

CCS CONCEPTS

• Software and its engineering → Software maintenance

tools.

KEYWORDS

Code smells, Refactoring, Energy Consumption.

ACM Reference Format:

Emanuele Iannone, Fabiano Pecorelli, Dario Di Nucci, Fabio Palomba,
and Andrea De Lucia. 2018. Refactoring Android-specific Energy Smells: A
Plugin for Android Studio. In Proceedings of Seoul ’20: ICPC International
Conference on Program Comprehension (Seoul ’20). ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Seoul ’20, May 23–24, 2020, Seoul, South Korea
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Mobile applications (a.k.a. apps) have gained great popularity in
recent years. Developing a successful app requires to take into
account different contrasting constraints such as user experience,
performance, privacy, and energy consumption. One of the leading
causes of a quick battery drain is the hardware setup, i.e., the bat-
tery capacity, and the quality of the components. However, recent
studies have shown that even wrong source code implementation
decisions may decrease energy efficiency. For instance, Hasan et
al. [5] stated that choosing a wrong data structure can lead to up
to 300% energy waste. Palomba et al. [2, 10] analyzed the impact
of some Android-specific code smells and discovered that their
presence has a notable impact on battery usage, while Hecht et al.
[6] later confirmed these findings and report that those smells also
affect apps performance. These works based their analyses on a
particular subset of the Android-specific code smells defined by
Reimann’s et al. [11] called “energy-smells” (i.e., smells that have an
impact on energy consumption) and were supported by their own
energy smell detection tools: Paprika and aDoctor, respectively.

On the one hand, aDoctor (AnDrOid Code smell detecTOR) [9]
identifies 15 Android-specific code smells. It syntactically analyzes
the source code by extracting the Abstract Syntax Trees from the
classes (i.e., Java files) and then runs the detection algorithms which
are based on the Visitor pattern. On the other hand, Paprika [6]
works at byte-code level and currently detects 16 code smells (both
Object-Oriented and Android-specific). The empirical experimenta-
tion conducted to assess the accuracy of these tools showed that
both can reach a high precision and recall; nevertheless, none of
them is still able to provide developers with mechanisms that can
(1) recommend a refactoring opportunity and (2) automatically

refactor the code to remove a code smell instance.
Indeed, while most of these energy smells can be removed by

applying simple program transformations, e.g., adding a single state-
ment or a keyword into a method signature, practitioners still tend
not to refactor their code because (i) they are not aware of the exis-
tence of certain code smells and/or cannot estimate their impact [8];
(ii) they perceive the refactoring as a fault-prone activity [1, 4, 7].
For these reasons, an automated energy smell refactoring tool has
the potential to be used in practice to help developers dealing with
energy consumption.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Seoul ’20, May 23–24, 2020, Seoul, South Korea Iannone, et al.

To reach this goal, in this paper we enhance our previously
proposed tool aDoctor by (i) devising and applying refactoring
solutions for the detected Android-specific energy smells; (ii) inte-
grating it as a plugin for Android Studio, i.e., the reference IDE
for Android native app development, and (iii) making it publicly
available in the official JetBrains Plugin Repository.1

2 SMELL DETECTION AND REFACTORING

The original version of aDoctor was able to detect 15 different
Android-specific code smells, five of which were related to en-
ergy consumption, i.e., Durable WakeLock, Inefficient Data
Structure, Internal Setter, Leaking Thread and Member Ig-
noring Method. This new version can identify and remove these
energy-related code smells. Since the tool can also apply refactoring
operations, we updated the acronym of the tool, which now stands
for AnDrOid Code smell detecTiOn and Refactoring. In the follow-
ing sections, we present a usage scenario (Section 2.1) followed
by a brief explanation of the detection rule and refactoring action
implemented for each of the considered code smells (Sections 2.2
to 2.6) according to Reimann’s catalogue [11].

2.1 How to Use aDoctor

aDoctor is available in the JetBrains Plugin Repository, the reposi-
tory that contains the plugins for the JetBrains IDEs (e.g., IntelliJ
IDEA and Android Studio).

Potentially, any Java class can be analyzed by aDoctor if syn-
tactically correct. To launch the plugin, the developers have to
navigate the Refactor menu and select ADoctor. From the main
dialog window the developers can select (i) the energy smells to
detect and (ii) the package to analyze. By default, aDoctor detects
all the five smells mentioned above, starting from the root package.

After clicking the Start button, the detection algorithms are
executed on the Abstract Syntax Trees extracted from the source
classes. Although the analysis is quite rapid (taking no more than
a minute on projects with multiple modules), it can be aborted by
the user before ending. Once this phase is completed, the results
are shown as depicted in Figure 1. The first column presents a
combo box containing all the detected smell instances, while the
second and the third ones show the “diff” panel: the former exhibits
the current version of the source code, the latter the proposed
refactored version. In this way, the user can analyze how the source
code would be changed and confirm the operation by clicking on
Apply. In this case, the final step rewrites the Java classes according
to the refactoring algorithm. Note that only a single smell instance
at the time can be selected for refactoring.

2.2 Durable WakeLock

2.2.1 Definition. To avoid unnecessary battery consumption, an
idle Android device goes on standby, i.e., starts to dim the screen and
then disables the CPU. When an app needs to keep the CPU active
to complete some background work, the Android API provides
“wake-locks” that can be acquired to keep the device awake. A wake
lock should be acquired only when necessary, so it is a good practice
to either specify a release timeout or release it explicitly.

1https://plugins.jetbrains.com/plugin/13443-adoctor/

2.2.2 Identification. A class has aDurableWakeLock (DW) smell
when it has a method with an instance of PowerManager.WakeLock
(either declared locally or at instance level) that acquires a wake
lock without setting a release timeout and without subsequently
calling release() within the same scope.

2.2.3 Refactoring. ADW smell can be fixed by adding a release()
call statement at the end of the source code block where the smelly
PowerManager.WakeLock instance calls the acquire() method.

2.3 Inefficient Data Structure

2.3.1 Definition. A HashMap’s key type parameter can be any
Object subclass, typically primitive types wrapper classes, like
Integer. Almost all method calls on a HashMap let the Android
RunTime (ART) to apply the autoboxing continuously and unbox-
ing (the automatic two-way conversion between primitive type
with their corresponding wrappers), that determines a non-trivial
computational overhead.

TheAndroid API offers the SparseArray class, that acts similarly
to a HashMap<Integer, Object> but the key is always a primitive
int type, instead of an Integer—an int variable requires much
less memory than an Integer object. There are some drawbacks
about SparseArray: it is only Android-specific, (so the portability
to other Java platforms is reduced); it has a quite different API
with respect to HashMap; the data structure does not scale well,
implying that a HashMap with over 1000 items has generally better
performance over a SparseArray of the same size [3] [5].

2.3.2 Identification. A class has an Inefficient Data Structure
(IDS) smell when it declares a HashMap local variable whose first
type argument (i.e., key) is an Integer.

2.3.3 Refactoring. An IDS smell can be fixed by changing the
variable declaration type from HashMap<Integer, X> (where X
is any subclass of Object) to SparseArray<X>. Afterwards, ev-
ery method call done by each of the variable contained into the
smelly variable declaration (i.e., HashMap<Integer, X>) should be
changed to the SparseArray equivalent ones. Finally, in case the
SparseArray class has not been imported in the class, the related
import statement should be added.

2.4 Internal Setter

2.4.1 Definition. Setter methods are a fundamental component
of Object-Oriented programming. They usually accept a single
argument that is assigned to an instance variable; optionally, they
might add a precondition check before this assignment. A non-
static method of the same class that calls a setter of this kind (i.e.,
with only a single assignment) makes a useless computational effort
because it has the access rights to make a direct assignment on that
property, possibly causing an energy loss.

2.4.2 Identification. A class has an Internal Setter (IS) smell if
one of its methods calls an internal setter.

2.4.3 Refactoring. An IS smell can be fixed by using a direct in-
stance variable assignment instead of a setter method call; never-
theless, the setter method is not removed completely, so that public
accesses to it are preserved.

Refactoring Android-specific Energy Smells:
A Plugin for Android Studio Seoul ’20, May 23–24, 2020, Seoul, South Korea

Figure 1: Smell dialog where the analysis results and refactoring proposals are shown.

2.5 Leaking Thread

2.5.1 Definition. The Android Runtime (ART) treats an active
Thread instance as a Garbage Collector (GC) root, meaning that its
memory cannot be reclaimed. Whenever a Thread is stopped (by
calling stop() or interrupt()), it ceases to be treated as a GC root,
becoming eligible for garbage collection. Note that a fully executed
Thread is not considered stopped until stop() or interrupt() is
called: this causes memory waste.

2.5.2 Identification. A subclass of an Activity has a Leaking
Thread (LT) smell when it exhibits a Thread instance variable that
calls start() in a class method but not interrupt() in any of the
class methods.

2.5.3 Refactoring. A LT smell can be fixed by calling the
interrupt() method for the leaking Thread in the onDestroy()
callback. If onDestroy() does not exist in the source code of the
class, it should be added.

2.6 Member Ignoring Method

2.6.1 Definition. According to the Java Memory Model, a static
method is faster than its equivalent non-static one: mainly because
the caller object this reference is not passed to static methods,
so the reference resolution does not take place. A static method
does not access any internal properties (i.e., instance variables and
non-static methods). Therefore, if a non-static method does not
access any internal properties of its belonging class, it should be
set as a static one.

2.6.2 Identification. A class has a Member Ignoring Method
(MIM) smell when it has a non-static and non-empty method that
(i) does not access any instance variable; (ii) does not use this and
super keywords; (iii) does not override an inherited method.

2.6.3 Refactoring. AMIM smell can be fixed by adding the static
keyword to the smelly method signature.

3 TOOL ARCHITECTURE

The plugin infrastructure has been implemented with the IntelliJ
Platform SDK, which makes available a set of libraries that allows
the extension of the IntelliJ Platform by creating plugins, custom
languages support or a custom IDE. In this work we used it to
integrate aDoctor as a plugin for Android Studio and to get
access to IntelliJ Platform’s menus and built-in tools (like diff)
in order to (i) launch the plugin, (ii) fetch all project files, and (iii)
use the diff to show the refactoring proposals.

Figure 2 shows the tool architecture, which is a two-layer model.
The Presentation layer contains both the presentation and control
logic, mainly in the Dialog subsystem. IntelliJ Platform provides
a good support for Swing components, letting the plugins have the
same look-and-feel of the host IDE; for this reason, the presentation
logic is entirely composed of Swing dialog windows. The global
control logic is centralized in a single class, called CoreDriver, that
selects the right dialog to display and moves data among them
through callback interfaces.

Seoul ’20, May 23–24, 2020, Seoul, South Korea Iannone, et al.

Figure 2: Overview of the aDoctor architecture.

The Application layer contains the whole business logic. The
Analysis subsystem performs the smell detection; the Proposal sub-
system receives the smells data and prepares the refactoring pro-
posals; the Refactoring subsystem refactors the code if developers
accept a proposal. aDoctor does not need to store any persistent
data, so, through IntelliJ Platform SDK, it only accesses the local
file system for reading and writing on source files.

Since its first version, aDoctor has been based on Eclipse JDT
Core library for parsing Java files and extracting their Abstract
Syntax Trees; for this reason, we decided not to change this depen-
dency to reuse the logic of the detection algorithms—thus, being
also sure to preserve their accuracy.

Finally, the Analytics subsystem gathers some usage statistics,
such as the type of smell selected by the user during the analysis
and refactoring phases. These data will be used in future works to
investigate the practical usefulness of the tool in the wild.

4 NOTES ON EVALUATION

Since the tool provides two main characteristics (i.e., identification
and refactoring of energy smells), we report two different strategies
for its evaluation.

4.1 Evaluating Energy Smell Identification

The identification algorithms of all the smells mentioned above
have already been evaluated in the study by Palomba et al. [9], in
which the tool achieved an average F-measure close to 100%. The
previous empirical study required a human oracle due to the absence
of a dataset for the aforementioned energy smells in literature.
The authors collected 18 different apps of different scope and size
and asked a master student of the University of Salerno, having
experience with Android development, to seek the presence of
energy smells in the code; a second master student of the same
university validated the produced oracle, so that some of the false
positives were removed. Finally, the smell set built from the oracle
was compared to the candidate set built by aDoctor to compute
the precision and recall scores.

4.2 Evaluating Energy Smell Refactoring

Most of the refactoring techniques are concerned with small pro-
gram transformations that do not change the external behavior of
the target class: for instance, the MIM code smell is removed by
adding the keyword static to the signature of the affected method.
This, of course, changes the way the method is called but not its
external behavior.

The only exception is represented by the refactoring of Ineffi-
cient Data Structure, which is generally more complex: it re-
quires the update of all method calls previously done on a HashMap.
Being a set of one-by-one replacements of each HashMap method
calls, we expect no changes in the external behavior of refactored
classes. To confirm this assumption, we plan an early evaluation
that (1) exercises the apps with the available test suites before and
after having applied the automated refactoring of IDS instances
and (2) compares the test outputs. Afterwards, we plan another
evaluation involving both industrial and academic developers to
assess refactoring performance better.

Our next purpose is to evaluate the tool’s statistical significance:
understanding to what extent the tool is considered useful for An-
droid developers. We published the plugin in the JetBrains Plugins
Repository, and we are collecting usage data on which kind of smell
developers choose to detect and, in case, refactor.

Finally, having a good evaluation of refactoring perfomance
can reduce developers’ concerns about automatic techniques, as
explained in [7].

5 CONCLUSION

In this demo, we presented an extended version of aDoctor tool
that is able to detect and fix five Android-specific energy smells
directly within Android Studio [11] by navigating andmanipulating
an app’s Abstract Syntax Trees extracted from the source code. The
main contributions can be summarized as follows:

• A tool that is able to identify and refactor five code smells
that have an impact on energy consumption;

• A detailed explanation of its detection and refactoring fea-
tures;

• Details about the evaluation of the tool performance and its
utility in real scenarios;

We have planned several improvements for the tool, like im-
plementing additional energy smell detection and refactoring and
adding the feature to return more than one smell instance per class.

ACKNOWLEDGMENTS

Palomba gratefully acknowledges the support of the Swiss National
Science Foundation through the SNF Project No. PZ00P2_186090.

REFERENCES

[1] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano
Di Penta, Rocco Oliveto, and Orazio Strollo. 2012. When Does a Refactor-
ing Induce Bugs? An Empirical Study. In Proceedings of the 2012 IEEE 12th
International Working Conference on Source Code Analysis and Manipulation
(SCAM ’12). IEEE Computer Society, Washington, DC, USA, 104–113. https:
//doi.org/10.1109/SCAM.2012.20

[2] Dario Di Nucci, Fabio Palomba, Antonio Prota, Annibale Panichella, Andy Zaid-
man, and Andrea Lucia. 2017. PETrA: A Software-Based Tool for Estimating the
Energy Profile of Android Applications. https://doi.org/10.1109/ICSE-C.2017.18

https://doi.org/10.1109/SCAM.2012.20
https://doi.org/10.1109/SCAM.2012.20
https://doi.org/10.1109/ICSE-C.2017.18

Refactoring Android-specific Energy Smells:
A Plugin for Android Studio Seoul ’20, May 23–24, 2020, Seoul, South Korea

[3] Google. 2019. SparseArray. https://developer.android.com/reference/android/
util/SparseArray

[4] Sarra Habchi, Romain Rouvoy, and Naouel Moha. 2019. On the Survival of
Android Code Smells in the Wild. In Proceedings of the 6th International Confer-
ence on Mobile Software Engineering and Systems (MOBILESoft ’19). IEEE Press,
Piscataway, NJ, USA, 87–98. http://dl.acm.org/citation.cfm?id=3340730.3340749

[5] Samir Hasan, Zachary King, Hafiz Suliman Munawar, Mohammed Sayagh, Bram
Adams, and Abram Hindle. 2016. Energy profiles of Java collections classes.
225–236. https://doi.org/10.1145/2884781.2884869

[6] G. Hecht, N. Moha, and R. Rouvoy. 2016. An Empirical Study of the Performance
Impacts of Android Code Smells. In 2016 IEEE/ACM International Conference on
Mobile Software Engineering and Systems (MOBILESoft). 59–69. https://doi.org/
10.1109/MobileSoft.2016.030

[7] M. Kim, T. Zimmermann, and N. Nagappan. 2014. An Empirical Study of Refac-
toringChallenges and Benefits at Microsoft. IEEE Transactions on Software Engi-
neering 40, 7 (July 2014), 633–649. https://doi.org/10.1109/TSE.2014.2318734

[8] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrea Lucia. 2014. Do They Really Smell Bad? A Study on Developers’ Per-
ception of Bad Code Smells. Proceedings - 30th International Conference on
Software Maintenance and Evolution, ICSME 2014 (12 2014), 101–110. https:
//doi.org/10.1109/ICSME.2014.32

[9] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia. 2017.
Lightweight detection of Android-specific code smells: The aDoctor project.
In 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 487–491. https://doi.org/10.1109/SANER.2017.7884659

[10] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Andy Zaidman, and Andrea
Lucia. 2018. On the Impact of Code Smells on the Energy Consumption of
Mobile Applications. Information and Software Technology (09 2018). https:
//doi.org/10.1016/j.infsof.2018.08.004

[11] Jan Reimann, Martin Brylski, and Uwe Assmann. 2014. A Tool-Supported Quality
Smell Catalogue For Android Developers.

https://developer.android.com/reference/android/util/SparseArray
https://developer.android.com/reference/android/util/SparseArray
http://dl.acm.org/citation.cfm?id=3340730.3340749
https://doi.org/10.1145/2884781.2884869
https://doi.org/10.1109/MobileSoft.2016.030
https://doi.org/10.1109/MobileSoft.2016.030
https://doi.org/10.1109/TSE.2014.2318734
https://doi.org/10.1109/ICSME.2014.32
https://doi.org/10.1109/ICSME.2014.32
https://doi.org/10.1109/SANER.2017.7884659
https://doi.org/10.1016/j.infsof.2018.08.004
https://doi.org/10.1016/j.infsof.2018.08.004

	Abstract
	1 Introduction
	2 Smell detection and refactoring
	2.1 How to Use aDoctor
	2.2 Durable WakeLock
	2.3 Inefficient Data Structure
	2.4 Internal Setter
	2.5 Leaking Thread
	2.6 Member Ignoring Method

	3 Tool architecture
	4 Notes on evaluation
	4.1 Evaluating Energy Smell Identification
	4.2 Evaluating Energy Smell Refactoring

	5 Conclusion
	Acknowledgments
	References

