
Developer-Driven Code Smell Prioritization
Fabiano Pecorelli,

1
Fabio Palomba,

1
Foutse Khomh,

2
Andrea De Lucia

1

1
SeSa Lab - University of Salerno, Italy —

2
École Polytechnique de Montréal, Canada

fpecorelli@unisa.it,fpalomba@unisa.it,foutse.khomh@polymtl.ca,adelucia@unisa.it

ABSTRACT
Code smells are symptoms of poor implementation choices applied

during software evolution. While previous research has devoted

effort in the definition of automated solutions to detect them, still

little is known on how to support developers when prioritizing

them. Some works attempted to deliver solutions that can rank

smell instances based on their severity, computed on the basis

of software metrics. However, this may not be enough since it

has been shown that the recommendations provided by current

approaches do not take the developer’s perception of design issues

into account. In this paper, we perform a first step toward the

concept of developer-driven code smell prioritization and propose

an approach based on machine learning able to rank code smells

according to the perceived criticality that developers assign to them.

We evaluate our technique in an empirical study to investigate its

accuracy and the features that are more relevant for classifying the

developer’s perception. Finally, we compare our approach with a

state-of-the-art technique. Key findings show that the our solution

has an F-Measure up to 85% and outperforms the baseline approach.

KEYWORDS
Code smells; Machine Learning for Software Engineering; Empirical

Software Engineering.

ACM Reference Format:
Fabiano Pecorelli,

1
Fabio Palomba,

1
Foutse Khomh,

2
Andrea De Lucia

1
.

2020. Developer-Driven Code Smell Prioritization. In 17th International
Conference on Mining Software Repositories (MSR ’20), October 5–6, 2020,
Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages. https://doi.

org/10.1145/3379597.3387457

1 INTRODUCTION
As a software system evolves, continuous modifications are re-

quired to adapt it to new requirements and/or changing environ-

ments or even fix defects that can preclude its correct functioning

[69]. These activities are usually performed between strict dead-

lines and constraints to meet [9]. As a side effect, developers risk to

introduce technical debts [9, 78], i.e., sub-optimal implementation

decisions that provide short-term benefits but cause a decrease of

software quality. One of the main indicators of technical debt is

represented by the presence of code smells [26], which are poor

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00

https://doi.org/10.1145/3379597.3387457

design/implementation choices applied by developers during main-

tenance and evolution, e.g., the introduction of complex and/or long

classes, excessive coupling between objects, and so on.

Code smells have been often associated to a decrease of program

comprehensibility [1], maintainability [38, 59], testability [28] as

well as an increase of maintenance effort and costs [80]. These

findings have motivated researchers to propose automated mech-

anisms to support developers in both the identification [4, 18, 21]

and removal [51] of code smells, obtaining promising results.

Despite this effort, the adoption of code smell detectors in prac-

tice is still limited [57]. Among the others, two notable reasons

precluding the applicability of automated detectors in practice may

be: (1) the large amount of code smell instances detected by these

tools combined to the little knowledge on how to prioritize their

refactoring [25, 49]; (2) the empirical evidence that most of the avail-

able detectors identify code smells that developers do not perceive

or do not consider critical [23, 65].

While some researchers provided initial attempts toward the

prioritization of code smells using measures of severity derived

from software metrics [3, 25, 49, 93], the available solutions either

rely on predefined heuristics that have not been empirically as-

sessed or do not address the problem of providing developers with

recommendations aligning with their perception of design issues,

thus possibly being still ineffective in practice.

In this paper, we build on this line of research and propose

the first step toward the concept of developer-driven code smell
prioritization as an alternative and more pragmatic solution to the

problem: Rather than ranking code smell instances based on their

severity computed using software metrics, we propose to prioritize

them according to the criticality perceived by developers.

In particular, we first perform surveys to collect a dataset com-

posed of developers’ perception of the severity of 1,332 code smell

instances—pertaining to four different types of design problems—

for which original developers rated their actual criticality and then

propose a novel supervised approach that learns from such labeled

data to rank unseen code smell instances. Afterwards, we conduct

an empirical study to (1) verify the performance of our prioritization

approach, (2) understand what are the features that contribute most

to model the developer’s perceived criticality of code smells, and (3)

compare our approach with the state-of-the-art baseline proposed

by Arcelli Fontana and Zanoni [25]. The key differences between

our approach and the baseline considered for the comparison are

(i) the usage of different kinds of predictors (e.g., process metrics)

rather than considering only structural ones, and (ii) the definition

of a dependent variable based on the developers’ perception.

The main result of the study highlights that the devised approach

can classify the developer’s perceived criticality of code smells

with an F-Measure ranging between 72% and 85%. Moreover, we

discovered that, depending on the code smell type, specific features

are more relevant to classify its criticality. Finally, our approach

https://doi.org/10.1145/3379597.3387457
https://doi.org/10.1145/3379597.3387457
https://doi.org/10.1145/3379597.3387457

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Pecorelli et al.

performs better than the experimented baseline when classifying

all considered code smells.

To sum up, this paper provides the following contributions:

(1) A new dataset reporting the criticality perceived by original

developers with respect to 1,332 code smell instances of four

different types, which can be further used by the community

to build upon our research;

(2) The first machine learning-based approach to prioritize code

smells according to the real developers’ perceived criticality;

(3) An empirical study that showcases the performance of our

approach, the importance of the employed features, and the

reasons why our technique goes beyond the state-of-the-art;

(4) An online appendix with the datasets used in the study, that

can be exploited to replicate and extend our work.

Structure of the paper. In Section 2 we summarized the related

literature. Section 3 describes the methods employed to construct

the dataset, while Section 4 reports on the definition of our approach

and its empirical evaluation. In Section 5 we discuss the results of

the study, while Section 6 overviews the threats to the validity of

the study and how we mitigated them. Finally, Section 7 concludes

the paper and outlines our future research agenda.

2 RELATEDWORK
The research community actively studied code smells in the past

[4, 18, 21]. On the one hand, researchers focused on understand-

ing the characteristics of code smells and, in particular, their ori-

gin [47, 60, 91], evolution [56], diffuseness [59], relevance for de-

velopers [61, 65, 85, 94, 95], impact on software comprehensibil-

ity [1, 66] and maintainability [6, 38, 80]. On the other hand, a num-

ber of automatic code smell detection approaches and tools have

been developed and validated [20, 24, 37, 39, 52, 62, 64, 68, 71, 89].

When it comes to code smell prioritization, however, the re-

search contribution so far is notably less prominent and much more

focused on the idea of ranking refactoring recommendations. For

instance, Tsantalis and Chatzigeorgiou [90] proposed to order the

refactoring suggestions given by JDeodorant using historical in-

formation and, particularly, modeling the probability that a certain

refactorable class will change in the near future. Along these lines,

Girba et al. [27] employed the number of changes as metric to decide

on whether a class should be refactored in the current release of a

software system. With respect to these papers, there are two main

aspects that make our paper different. First, there may be refactor-

ing opportunities that do not target classes affected by code smells,

i.e., many refactoring actions are driven by other considerations,

e.g., the introduction of design patterns [6, 79]. As such, the goal of

our paper is diametrically different, since we aimed at ranking code

smells based on their perceived criticality. In the second place, the

papers above are based on the underlying concept that the recent

history of class is the main driver for its refactorability, while we

showed that multiple metrics may possibly contribute to it.

Other researchers took a closer look to the problem of priori-

tizing code smells. Marinescu [49] defined a method to rank smell

instances based on their severity that can be applied on top of

heuristic-based code smell detectors: given a set of metrics that

characterize a class and given the corresponding thresholds that dis-

criminate high/low values for these metrics, the method computes

the average distance between the actual code metric values and

the fixed thresholds. That is, smell instances having higher average

distance from the thresholds are ranked at the top. Later on, Ar-

coverde et al. [3] proposed heuristics to rank code anomalies based

on their impact on the overall architecture of the system, computed

on the basis of number of changes and faults. These two works are

essentially based on predefined heuristics, hence implementing a

different approach with respect to the one proposed in our paper.

Also, these approaches have not been tested in practice and, for this

reason, little is known about their actual capabilities. Nevertheless,

in our study we considered these papers when defining the set of

independent variables of our model: we considered both number of

changes and faults coming from Arcoverde et al. [3] as well as the
severity computed as suggested by Marinescu [49].

The two closest works are by Vidal et al. [93] and Arcelli Fontana
and Zanoni [25]. The first approach takes into account three main

factors to prioritize code smells, i.e., stability, relevance, and modi-

fiability scenarios; however, it is semi-automated and requires the

input of experts to be actually used. On the contrary, with this paper

we aimed at providing a fully automated solution. As for Arcelli

Fontana and Zanoni [25], the authors defined a machine learner

based on a large variety of size, cohesion, coupling, and complexity

metrics, to predict the severity of the presence of a certain code

smell in a class/method (from low to high). In their empirical study,

the approach reached up to 95% in terms of F-Measure. Our work

built on top of the work by Arcelli Fontana and Zanoni [25] and

proposed a further step ahead: first, we aimed at classifying the

perceived criticality of code smells in order to define methods that

are closer to what developers consider real design issues; second,

we do that by exploiting metrics of different nature and able to

characterize the perceived quality of classes under different per-

spectives.

3 DATASET CONSTRUCTION
To perform our empirical study, we needed to collect a dataset re-

porting the perceived criticality of a set of code smells large enough

to train a machine learning model. To this aim, we first defined the

objects of the study, namely (1) a set of software projects and (2) the

code smell types we were interested in with their corresponding

detectors; Then, we inquired the subjects of our study, namely the

original developers of the considered projects, in order to collect

their perceived criticality of the code smell instances detected on

their codebase. The next subsections describe the various steps we

followed to build our dataset.

3.1 Selecting projects
The context of the study consisted of nine open-source projects

belonging to two major ecosystems such as Apache
1
and Eclipse.

2

Basic information and statistics about the selected projects are sum-

marized in Table 1. Specifically, for each considered project, we

report (i) the total number of commits available in its change his-

tory, (ii) the total number of contributors, and (iii) the size as the

1
https://www.apache.org

2
https://www.eclipse.org/org/

Developer-Driven Code Smell Prioritization MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Table 1: Software Projects in Our Dataset.

Project #Commits #Devs #Classes KLOCs
Apache Mahout 3,054 55 813 204

Apache Cassandra 2,026 128 586 111

Apache Lucene 3,784 62 5,506 142

Apache Cayenne 3,472 21 2,854 542

Apache Pig 2,432 24 826 372

Apache Jackrabbit 2,924 22 872 527

Apache Jena 1,489 38 663 231

Eclipse CDT 5,961 31 1,415 249

Eclipse CFX 2,276 21 655 106

Overall 32,889 436 5,506 542

number of classes and KLOCs. The selection of these projects was

driven by a number of factors. In the first place, we only focused on

open-source projects since we needed to access source code to de-

tect the considered design flaws. Similarly, we limited ourselves to

Java systems as most of the smells, as well as code smell detectors,

have been only defined for this programming language [4, 18, 63].

Furthermore, we aimed at analyzing projects having different (a)

codebase size, (b) domain, (c) longevity, (d) activity, and (e) popula-

tion. As such, starting from the set of 2, 576 open-source systems

written in Java and belonging to the two considered ecosystems

available at the time of the analysis on Github,
3
we only took into

account those having a number of classes higher than 500, with a

change history at least 5 years long, having at least 1, 000 commits,

and with a number of contributors higher than 20. This filter gave

us a total of 682 systems: of these, we randomly selected 9 of them.

3.2 Selecting code smells
We focused on four class-level types of code smells, namely:

Blob (or God Class). This code smell type affects classes that do

not follow the single-responsibility principle [88], i.e., they imple-

ment more than one responsibility, thus being poorly cohesive

and hard to understand/maintain [26]. Previous studies demon-

strated that classes affected by this smell are connected to higher

change- and defect-proneness [38, 59] as well as maintenance and

evolution costs [1, 80, 81]. According to recent findings [61, 85],

this smell is among the most critical ones for practitioners.

Complex Class. Instances of this smell affect classes that have

high cyclomatic complexity [10] and that, therefore, may pri-

marily make the testing of those classes harder [28, 50], but also

lower the ability of developers to evolve them [59]. Existing em-

pirical evidence on the developer’s perception about this smell

indicated that practitioners are generally able to recognize this

smell and assess its criticality [61, 95].

Spaghetti Code. This smell affects classes that do not properly

use Object-Oriented programming principles (e.g., inheritance),
declare at least one long method with no parameters, and use in-

stance variables [26] — it refers to classes that follow a functional

programming style. Similarly to the other considered code smells,

also Spaghetti Code has been widely investigated in the past by

researchers, who discovered that it hinders the ability of devel-

opers to comprehend source code [1], increases maintenance

3
https://github.com

effort [38, 80], and can be accurately assessed by developers with

respect to its criticality [61, 85].

Shotgun Surgery. When a change to a class (e.g., to one of its

fields/methods) triggers many little changes to other classes of

the system, such class is affected by this smell [26]. Instances of

this smell are associated with a higher defect-proneness of the

involved class [17]. Previous studies on the perception of this

smell revealed that practitioners perceive its presence depending

on the intensity of the flaw [61], i.e., depending on the number

of changes triggered on other classes of the project.

Three specific factors drove the selection of these four code smell

types. First, they have been shown to be highly diffused in real soft-

ware systems [59], thus allowing us to target code smells that are

relevant in practice. Second, they are reported to negatively impact

maintainability, comprehensibility, and/or testability of software

systems [28, 38, 59]: as such, we could investigate design flaws

that practitioners may be more able to analyze and assess. Finally,

previous findings [61, 85, 95] showed not only that they are actual

problems from the developer’s perspective, but also that their criti-

cality can be accurately assessed by practitioners, thus mitigating

potential problems due to the presence of the so-called conceptual

false positives [23], i.e., code smell instances detected as such by

automated tools but not representing issues for developers.

3.3 Selecting code smell detectors
Once we had selected the specific code smells object of our inves-

tigation, we then proceeded with the choice of automated code

smell detectors that could identify them. Among all the available

solutions proposed so far by researchers [21], we opted for Decor

[52] and Hist [62]. The first was selected to identify instances of

Blob, Complex Class, and Spaghetti Code, while the latter for the

detection of Shotgun Surgery.
More specifically, Decor is an automated solution which adopts

a set of “rule cards”,
4
namely rules able to describe the intrinsic

characteristics that a class must have to be affected by a certain

code smell type. In the case of Blob, the approach identifies it when

a class has a Lack of Cohesion of Method (LCOM5) [34] higher

than α , a total number of methods and attributes higher than β , it
is associated to many data classes (i.e., classes having just get and

set methods), and has a name having a suffix in the set {Process,
Control, Command, Manage, Drive, System}, where α and β are rel-

ative threshold values. When detecting Complex Class instances,
Decor computes the Weighted Methods per Class metric (WMC),

i.e., the sum of the cyclomatic complexity of all methods of the

class [50], and marks a class as smelly if the WMC is higher than a

defined threshold. Finally, Spaghetti Code instances are represented
by classes presenting (i) at least one method without parameters

and having a number of lines of code higher than a defined thresh-

old, (ii) no inheritance, as indicated by the Depth of Inheritance

Tree metric (DIT) [15] which must be equal to 1, and (iii) a name

suggesting procedural programming, thus having as prefix/suffix

a word in the set {Make, Create, Exec}. There are two key reasons

leading us to rely on Decor for the detection of these three smells.

In the first place, this detector has been employed in several previ-

ous studies on code smells [36, 39, 46, 65, 66], showing good results

4
http://www.ptidej.net/research/designsmells/

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Pecorelli et al.

when considering both precision and recall. At the same time, it

implements a lightweight mechanism with respect to other existing

approaches (e.g., textual-based techniques relying on information

retrieval [64, 67]): the scalability of Decor allows us to perform an

efficient detection on the large systems considered in the study.

Turning our attention to the detection of Shotgun Surgery, the
discussion is different. Approaches based on source code analysis

are poorly effective for the detection of this smell [62]; for instance,

the approach proposed by Rao and Reddy [75]—which computes

coupling metrics to build a change probability matrix that is then

filtered to detect the smell—was not able to identify any Shotgun
Surgery instance when applied in large-scale studies [62]. For this

reason, we relied on Hist [62], a historical-based technique that

(1) computes association rules [2] to identify methods of different

classes that often change together and (2) identifies instances of

the smell if a class contains at least one method that frequently

changes with methods present in more than 3 different classes. Such

a historical-based approach has shown an F-Measure close to 92%

[62], thus representing a suitable solution for conducting our study.

On a technical note, we relied on the original implementations

of Decor and Hist, hence avoiding potential threats to construct

validity due to re-implementations.

3.4 Collecting the criticality of code smells
The last step required to build our dataset was the actual detection

of code smells in the considered systems and the subsequent inquiry

on their criticality. We followed a similar strategy as Silva et al. [79]:
in short, in a time period of 6 months, from January 1st to June

30th, 2018, we monitored the activities performed on the selected

repositories and, as soon as a developer committed changes to

classes affected by any of the considered smells, we sent an e-mail to

that developer to ask (i) whether s/he actually perceived/recognized

the presence of a code smell and (ii) if so, rate its criticality using a

Likert scale from 1 (very low) to 5 (very high) [43].

In particular, we built an automated mechanism that fetched—

using the git-fetch command—commits from the repositories to

a local copy on a daily basis. This gave us the possibility to generate

the list of classes modified during the workday. At this point, we per-

formed the actual smell detection. In the case of Decor, we parsed

each modified class and run the detection rules described in Section

3.3 to identify instances of Blob, Complex Class, and Spaghetti Code.
As for Hist, it requires information about the change history of

the involved classes: for this reason, before running the Shotgun
Surgery detection algorithm, we mined the log file of the projects

to retrieve the set of changes applied on the classes modified during

the workday. Through the procedure described so far, we obtained

a list of smelly classes, and, for each of them, we stored the e-mail

address of the developer who committed changes on it. Afterwards,

we manually double-checked the smelly classes given by the auto-

mated tools with the aim of discarding possible false positives, thus

avoiding asking developers useless information. Overall, the code

smell detection phase resulted in a total of 2, 675 candidate code

smells. Of these, we discarded 455 (≈17%) false positives.

Finally, we sent e-mails to the original developers. In the text,

we first presented ourselves and then explained that our analysis

tool suggested that the developer likely worked on a class affected

by a design issue—without revealing the exact code smell to avoid

confirmation bias [55]. Then we asked three specific questions:

(1) Were you aware of the presence of a design flaw?

(2) If yes to question (1), may you please briefly describe the type
of design flaw affecting the class?

(3) If yes to question (1), may you please rate the criticality of the
design flaw from 1○ (very low) to 5○ (very high)?

We asked the first question to make sure that the contacted de-

velopers perceived classes as affected by code smells. If not, they

could not obviously provide meaningful information on their criti-

cality, and the answers were discarded. Otherwise, we further asked

to explain the design problem perceived, so that we could under-

stand if developers were actually aware of the specific smell. When

receiving the answers, we checked if the explanation given by de-

velopers was in line with the definition of the smell: for instance,

one developer was contacted to rate the criticality of a Blob class
and explained that “[the class] is a well-known problem, it is huge
in size and has high coupling”, thus indicating that s/he correctly

recognized the smell we were proposing to him/her. In these cases,

we considered the answer to the third question valid, otherwise

we discarded it. Note that if a code smell was detected in the same

class more than once, we did not send any e-mail to not bother the

developers multiple times for the same class.

As an outcome, we sent a total of 1, 733 e-mails to 372 distinct

developers, i.e., an average of 0.77 e-mails per month per developer,

while 487 code smells affected the same classes multiple times

and, therefore, we avoided sending e-mails for them. Moreover,

we could not assess the criticality of 310 code smells because the

139 developers responsible for them did not reply to our e-mails.

Also, we had to discard 91 answers received since the contacted

developers did not perceive the presence of code smells, i.e., they
answered ‘no’ to question (1).

Hence, we finally gathered 1, 332 valid answers coming from 233

developers: the high response rate (62%) is in line with previous

works that implemented a similar recruitment strategy [66, 79] and

indicates that contacting developers immediately after their activi-

ties with short surveys not only increases the chances of receiving

accurate answers [79], but also helps increasing their overall respon-

siveness. As a final note, the 1, 332 code smell instances evaluated

were almost equally distributed among the four considered types

of design flaw: indeed, we had answers for 341 Blob, 349 Complex
Class, 313 Spaghetti Code, and 329 Shotgun Surgery instances. Also,

the criticality values assigned by developers to each smell type

were almost uniformly distributed over the possible ratings (1○ to

5○)—more details are available in our online appendix [72].

4 A NOVEL CODE SMELLS PRIORITIZATION
APPROACH AND ITS EVALUATION

The goal of our study is to define and assess the feasibility of us-

ing a machine learning-based solution to prioritize code smells

according to their perceived criticality, with the purpose of provid-
ing developers with recommendations that are more aligned to the

way they actually refactor source code. The perspective is of both
practitioners and researchers: the former are interested in adopting

more practical solutions to prioritize refactoring activities, while

Developer-Driven Code Smell Prioritization MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

the latter are interested in assessing how well machine learning

can be employed to model developer’s criticality of code smells.

4.1 Research Questions
The empirical study revolves around three main research questions

(RQs). We started with the definition of a machine learning-based

approach to model the developer’s perceived criticality of code

smells. Starting from the dataset built following the strategy re-

ported in Section 3, we defined dependent and independent vari-

ables of the model as well as the appropriate machine learning

algorithms to deal with the problem. These steps led to the defini-

tion of our first research question:

RQ1. Can we predict developer’s perception of the criticality of a
code smell?

Besides assessing themodel as awhole, we then took a closer look

at the contributions given by the independent variables exploited,

namely what are the features that help the most when classifying

the perceived criticality of code smells. This step allowed us to verify

some of the conjectures made when defining the set of independent

variables to be used. Hence, we asked:

RQ2. What are the features of the proposed approach that con-
tribute most to its predictive performance?

As a final step of our investigation, we considered the literature

in the field to identify existing code smell prioritization approaches

that can be used as baselines, thus allowing us to assess how useful

our technique can be when compared to existing approaches. This

led to our final research question:

RQ3. How does our approach perform when compared with ex-
isting code smell prioritization techniques?

In the next sections, we describe the methodological details of

the evaluation of the proposed approach.

4.2 RQ1. Defining and assessing the
performance of the prioritization approach

To address RQ1, we defined a novel code smell prioritization ap-

proach that aims at classifying smell instances based on the de-

veloper’s perceived criticality using machine learning algorithms.

This implied the definition of an appropriate set of independent

variables able to predict the dependent variable, i.e., the developer’s
perception, as well as the proper algorithms and their configuration.

Dependent Variable. As a first step, we defined the developer’s

perceived criticality of code smells as a variable that the model

has to estimate. The dataset described in Section 3 reports, for

each code smell instance, a value ranging from 1 to 5 describing

the perceived criticality of that instance. Thus, we mapped the

problem as a classification one [16], namely we took into account

the case in which the learner has to classify the criticality of

code smells in multiple categorical classes [16]. In this case, we

converted the integers of our dataset in nominal values in the set

{low, medium, high}: if a code smell instance was associated to

1 or 2 in the original dataset, then we considered its perceived

criticality as low; if it was equal to 3, we converted its value in

medium; otherwise, we considered its criticality as high. With this

mapping, we merged the values assigned by developers in order

to build three main classes. This was a conscious decision given

by experimental tests: indeed, when experimentingwith a 5-point

classification problem,we observed that several misclassifications

were due to the approach not able to correctly distinguish (i) very-
low from low and (ii) high from very-high. Thus, we opted for a

3-point classification.

Independent Variables. To predict the perceived criticality of

code smells, we considered a set of features able to capture the

characteristics of classes under different angles. Table 2 summa-

rizes the families of metrics considered, the rationale behind their

use, and the specific indicators measured.

Previous research has not only shown that product metrics can in-

dicate actual design problems in source code [13, 53], but also lead

developers to recognize the presence of sub-optimal implemen-

tation solutions that would deserve some refactoring [61, 84, 85].

For these reasons, we considered four types of product metrics,

such as (i) size, (ii) cohesion, (iii) coupling, and (iv) complexity

metrics. For each of these types, we selected indicators having

different nature (e.g., structural aspects of source code rather than
textual components) and able to capture in different ways the

considered phenomena (e.g., we computed source code complex-

ity using both the McCabe metric and readability, which targets

a more cognitive dimension of complexity).

While product metrics can provide indications about the structure

of source code, we complemented them with orthogonal metrics

that capture the way the code has been modified as well as who

was responsible for that, i.e., process and developer-related met-

rics. Indeed, the developer’s perception of criticality may be not

always due to the complex structure of source code, but rather to

the problems it causes during the evolution process [65, 74]; sim-

ilarly, the criticality of code smells may be perceived differently

depending on whether the maintainer is an expert of the class

or not [8, 14]. Hence, we selected a number of metrics related

to those aspects: for instance, we computed the average number

of co-changing classes for the smelly class (AVG_CS) to assess

whether smells that often change with several classes are per-

ceived as more critical by developers or the number of previous

bug fixing involving the smelly class to observe if classes that are

more fault-prone are actually those perceived more critical. We

also computed measures of experience and ownership of devel-

opers working on the smelly class to test whether these factors

influence the developer’s ability to work on it.

Finally, we took into account some specific metrics related to

code smells: the idea here is that a number of aspects connected

to the smell itself may be relevant for developers when assessing

its criticality. In particular, the continuous presence of smell over

the history of the project (i.e., Pers.) may influence the ability

of developers to recognize its harmfulness better. Much in the

same way, the presence of refactoring opportunities (Ref.) or even

the number of previous refactoring actions done on the smelly

class (NR) may affect the perception of developers. Finally, we

also considered the code smell intensity, which is a measurable

amount of intensity of a certain code smell instance [49]: we

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Pecorelli et al.

Table 2: Software metrics used as independent variables split by categories - The motivations for their use are also reported.

Metric Acronym Description
Product metrics. Cohesion, coupling, and complexity may lower code quality and affect the perceived criticality of code smells [61, 84, 85].

Lines of Code LOC Amount of lines of code of a class excluding white spaces and comments.

Lack of Cohesion of Methods [15] LCOM5 Number of method pairs in a class having no common attribute references.

Conceptual Cohesion of Classes [48] C3 Average cosine similarity [5] computed among all method pairs of a class.

Coupling between Object Classes [15] CBO Number of classes in the system that call methods or access attributes of a class.

Message Passing Coupling [15] MPC Number of method calls made by a class to external classes of the system.

Response for a Class [15] RFC Sum of the methods of a class, i.e., number of methods that can potentially be executed in response to a

message received by an object of a class.

Weighed Methods per Class [15] WMC Sum of the McCabe cyclomatic complexity [50] computed on all methods of a class.

Readability [11] Read. Measure of source code readability based on 25 features, e.g., number of parentheses per lines of code.

Process metrics. The amount of activities made on smelly classes may affect the developer’s perceived criticality [42, 45, 74].

Average Commit Size AVG_CS Average number of classes that co-changed in commits involving a class.

Number of Changes NC Number of commits in the change history of the system involving a class.

Number of Bug Fixes NF Number of bug fixing activities performed on a class in the change history of the system.

Number of Committers NCOM Number of distinct developers who performed commits on a class in the change history of the system.

Developer-related metrics. Experience and workload of developers may affect the perceived criticality of code smells [8, 12, 14, 91].

Developer’s Experience [8] EXP Average number of commits of the committers of a class.

Developer’s Scattering Changes [19] DSC Average number of distinct subsystems in which the committers of a class made changes.

Development Change Entropy [33] CE Shannon’s entropy [77] computed on the number of changes of a class in the change history of the system.

Code Ownership [8] OWN Number of commits of the major contributor of a class over the total number of commits for that class.

Code smell-related metrics. Persistence of code smells and availability of refactoring opportunities may affect the developer’s perception [58, 68].

Persistence Pers. Number of subsequent major/minor releases in which a certain smell affects a class.

Intensity [49] Sev. Average distance between the actual metric values used for the detection of code smells and the corre-

sponding thresholds considered by the detectors to distinguish smelly and non-smelly elements.

Refactorable Ref. Existence of refactoring opportunities for a class, as detected by automated tools.

Number of Refactoring Actions NR Number of previous refactoring operations made by developers on a class.

included this metric to understand whether there is a match

between an “objective” measurement of code smell severity and

its real perceived criticality.

From a technical perspective, we employed the tool by Spinellis

[83] to compute product metrics, the one made available by Buse

and Weimer [11] for the computation of the readability index,

and PyDriller [82] to compute process and developer-related

metrics. As for the smell-related indicators, we developed our

own tool to compute Pers. and NR. Starting from the release Ri of
the projects taken into account, the former metric counts in how

many consecutive previous major and minor releases—identified

using the corresponding Git tags—the considered smell was

present, according to the employed detectors. The latter met-

ric, instead, was computed by mining the messages of commits

involving the smelly classes and looking for the presence of key-

words recommended in [92], e.g., ‘refactor’ or ‘restructure’. The
intensity of code smells has been assessed using the tool by Mari-

nescu [49], which computes the average distance between the

actual code metric values of the smell instance and the thresh-

olds fixed by the detection rules. Finally, the Ref. metric was

computed by (i) running JDeodorant [22], an existing refactor-

ing recommender that covers all refactoring actions associated

to the considered code smells, and (ii) putting the metric to 1 if

the tool retrieved at least one recommendation, 0 otherwise.

Machine Learning Algorithms. Once we had computed depen-

dent and independent variables, we proceeded with the definition

of the machine learning algorithms to be used.

In order to perform the classification, we investigated the use of

multiple algorithms [16], i.e., Random Forest, Logistic Regression,

Vector Space Machine, Naive-Bayes, and Multilayer Perceptron,

in order to assess what is the one giving the best performance.

Note that, before running the algorithms, we first applied a for-

ward selection of independent variables using the Correlation-

based feature selection (CFS) approach [44], which uses cor-

relation measures and a heuristic search strategy to identify a

subset of actually relevant features for a model, thus mitigating

possible problems due to multi-collinearity of features [54]. Then,

we configured classifiers’ hyper-parameters by exploiting the

Grid Search [7] algorithm, that runs an exhaustive search of

the hyper-parameter space: in so doing, the algorithm applies a

10-fold cross-validation [40] in order to evaluate multiple times

the effect of parameters on the performance of the model.

Training/Testing the Model. We built different models for each

code smell considered in the study, so the training data is rep-

resented by the set of observations available for a certain smell

in the collected dataset—the distribution of the criticality values

assigned by developers to the code smell instances evaluated is

available in our appendix [72]: the distribution is almost uniform

for all the criticality values. This aspect affected our decision to

not apply any balancing algorithm. On the one hand, there are no

classes requiring to be balanced with respect to the others. On the

other hand, previous findings [70, 71] have shown that balancing

code smell-related datasets can even damage the performance of

the resulting models.

To train the model, we employed a 10-fold cross-validation strat-

egy [40]: it randomly partitions the available dataset into 10 folds

of equal size, applying a stratified sampling—meaning that each

fold has the same proportion of the various criticality classes.

A single fold is then used as test set, while the remaining ones

are employed for training the model. The process is repeated ten

times so that each fold will be the test set exactly once.

Performance Assessment. We evaluated the performance of the

experimented model by analyzing confusion matrices, obtained

Developer-Driven Code Smell Prioritization MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

from the testing strategy described above, reporting the number

of true and false positives as well as the number of true and

false negatives. We analyzed these matrices by first computing

precision, recall, and F-Measure [5]. Then, we computed the

Matthew’s Correlation Coefficient (MCC), a correlation index

between the observed and predicted binary classifications, and

the Area Under the ROC Curve (AUC-ROC), which quantifies the

ability of the model to discriminate between the different classes.

4.3 RQ2. Explaining the Proposed Approach
In the context of RQ2, we took a deeper look into the performance

of the best model coming from the previous research question.

We aimed at understanding the value of the individual metrics

selected as independent variables; this step could possibly help

us explaining why the proposed approach works (or not) when

predicting the criticality of code smells. To this aim, we employed

an information gain algorithm [73], a category of methods that can

be used to quantify the gain provided by each feature to the correct

prediction of a dependent variable. From a formal point of view, let

M be a supervised learning model, let F = { f1, . . . , fn } be the set
of features composing M , i.e., the metrics reported in Table 2, an

information gain algorithmmeasures the difference in entropy from

before to after the setM is split on a feature fi . Roughly speaking,

the algorithm gives a measure of how much uncertainty in the

model M is reduced after splitting M on feature fi . In our work,

we implement this analysis using the Gain Ratio Feature Evaluation
algorithm [73], which is directlymade available by theWeka toolkit

[31]. It ranks the features f1, . . . , fn in descending order based on

the entropy reduction provided by fi to the decisions made byM ,

i.e., it gives as output a ranked list where the more relevant features

are reported at the top. We ran the algorithm considering each code

smell independently.

To analyze the resulting rank and have statistically significant

conclusions, we finally exploited the Scott-Knott Effect Size Dif-

ference (ESD) test [87]. This is an effect-size aware variation to

the original Scott-Knott test [76] that has been recommended for

software engineering research in previous studies [35, 41, 86] as it

(i) uses hierarchical cluster analysis to partition the set of treatment

means into statistically distinct groups according to their influence,

(ii) corrects the non-normal distribution of an input dataset, and (iii)

merges any two statistically distinct groups that have a negligible

effect size into one group to avoid the generation of trivial groups.

As effect size measure, the test relies on Cliff’s Delta (or d) [29]. To
compute the test, we used the publicly available implementation

5

provided by Tantithamthavorn et al. [87].

4.4 RQ3. Comparison with the state of the art
Finally, we investigated whether and to what extent the proposed

code smell prioritization approach overcomes the performance

of existing techniques. This step is paramount to understand the

novelty of our solution and how it may support developers better

than the baseline approaches.

The two closest techniques with respect to the one proposed

herein are those by Vidal et al. [93] and Arcelli Fontana and Zanoni
[25]: we set them as initial baselines for the comparison. In the

5
Link: https://github.com/klainfo/ScottKnottESD

former, the authors proposed SpIRIT, a semi-automated technique

that relies on three main criteria, namely (1) stability, i.e., number

of previous changes applied on a smelly class over the number of

total changes applied on the system, (2) relevance, i.e., the relative
importance of the class within the system according to the feedback

given by a developer, and (3)modifiability scenarios, i.e., the number

of possible use cases of the application that risk to be impacted

by the presence of the smell according to the opinion of an expert.

The three criteria are then combined through a weighted average,

where the weights are assigned by the user of the tool. As the reader

might have noticed, SpIRIT explicitly requires the intervention of

an expert to be employed in practice: indeed, the technique has

been tested in an industrial case study involving a Java project

affected by a total of 47 code smells and requiring the interaction of

core developer of the subject application. For this reason, we could

not use it as a baseline for a in-vitro assessment of our proposed

approach and we plan to perform a comparison with SpIRIT in our

future research agenda, as further explained in Section 7.

As for the technique proposed by Arcelli Fontana and Zanoni

[25], this is a machine learning-based solution that relies on 61

product metrics to predict how critical a certain code smell instance

is. This technique can be fully automated and, therefore, we could

use it as the baseline for our study and run it using the same depen-

dent variable, training, validation strategy, and dataset employed to

validate our approach. Once obtained the output from the baseline,

we compared it with ours by means of the same set of metrics used

in RQ1, i.e., precision, recall, F-Measure, MCC, and AUC-ROC.

5 RESULTS AND DISCUSSION
This section reports the results of our study, presenting each re-

search question independently.

5.1 RQ1. The Performance of our Model
In the context of RQ1, we aimed at assessing how well can we

predict the perceived criticality of code smells. Table 3 reports the

confusion matrices obtained when running the proposed approach

against our dataset of four code smell types, while Table 4 presents

the weighted average performance for each code smell. For the sake

of space limitations, we only report the results achieved with the

best classifier, i.e., Random Forest. A summary of the performance

of the other classifiers is available in our replication package [72].

In the first place, it is worth noting that the performance values

of our model are rather high and, indeed, it has an F-Measure that

ranges between 72% and 85%. This indicates that, in most of the

cases, our model can accurately classify the severity perceived

by developers. The worst case is represented by Shotgun Surgery,
where the model has an F-Measure of 72% and an AUC-ROC of 61%.

On the one hand, the former metric still indicates that the model is

able to correctly classify most of the instances of our dataset. On

the other hand, the latter suggests that the ability of separating

criticality classes may be further improved; this is also visible when

considering the confusion matrix for this smell (Table 3), where

we noticed that in 52% of cases the model classified non-severe

code smells as medium or severe cases. An example is represented

by the class security.JackrabbitAccessControlManager of the
Jackrabbit project. This class has 164 lines of code and has been

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Pecorelli et al.

Table 3: RQ1 - RQ3. Confusion matrices obtained when running the proposed model against our dataset.

Model Class/Smell Blob Complex Class Spaghetti Code Shotgun Surgery
Non-severe Medium Severe Non-severe Medium Severe Non-severe Medium Severe Non-severe Medium Severe

Our approach

Non-severe 54 10 6 46 17 27 57 11 2 46 37 13

Medium 6 171 18 14 176 0 5 151 6 8 134 10

Severe 1 10 65 6 1 62 0 7 74 5 16 60

Baseline

Non-severe 16 40 14 45 43 2 37 19 21 11 83 6

Medium 12 174 9 21 161 8 0 172 0 18 122 12

Severe 8 23 45 7 48 14 13 0 79 6 79 4

Table 4: RQ1 - RQ3. Weighted Average of the performance
achieved by the experimented models against our dataset.

Code smell Model Prec. Rec. F-Meas. MCC AUC-ROC

Blob

Our approach 86% 85% 85% 75% 89%

Baseline 66% 69% 66% 44% 78%

Complex Class

Our approach 79% 81% 80% 71% 89%

Baseline 62% 63% 63% 33% 76%

Spaghetti Code

Our approach 90% 88% 89% 83% 92%

Baseline 83% 85% 84% 77% 89%

Shotgun Surgery

Our approach 74% 71% 72% 61% 78%

Baseline 33% 40% 35% 32% 61%

detected as smelly because every time it is changed an average of

other 11 classes are also modified. Nevertheless, it has been subject

to a relatively low number of changes (19) and defects (1), likely

being less harmful than other instances of the smell. Analyzing the

othermisclassified cases, we noticed a similar trend: themodel tends

to misclassify instances because it is not always able to learn how

to balance the information coming from the number of classes to

be modified with the smelly one and the actual number of changes

that involve the smelly instance. As such, we can claim that possible

improvements to the classification model may concern the addition

of combined metrics, e.g., the ratio between number of co-changing

classes and number of previous changes of the smelly class.

As for the other code smells considered, the performance values

are higher and all above 80% and 70% in terms of F-Measure and

AUC-ROC. Hence, we can claim that the proposed model can be

effectively adopted by developers to prioritize code smell instances.

The best result is the one of Spaghetti Code (F-Measure=89%, AUC-

ROC=92%): in this case, the model misclassifies only 31 cases (10%

of the instances). By looking deeper at those cases, we could not

find any evident property of the source code leading to those false

positives. A similar discussion can be drawn when considering the

Blob and Complex Class code smells. Part of our future research

agenda includes the adoption of mechanisms able to better describe

the functioning of the learners used for the classification, e.g., ex-
plainable AI algorithms [30].

Finding 1. The proposed model has an F-Measure ranging
between 72% and 85%, hence being accurate in the classifica-
tion of the perceived criticality of code smells. The worst case
relates to Shotgun Surgery, where the model misclassifies
non-severe instances because of its partial inability to take
into account other process-related information like number
of changes involving the smelly classes.

5.2 RQ2. Features Contributing to the Model
Table 5 reports the list of features contributing the most to the

performance of the proposed model. As shown, each code smell has

its own peculiarities. To classify Blob instances, the model mostly

relies on structural metrics that capture complexity (RFC, WMC),

cohesion (LCOM5, C3), and coupling (CBO) of the source code:

basically, it means that the criticality of this code smell is given

by a mix of various structural factors and cannot be described by

just looking at them independently. At the same time, the number

of previous defects affecting those instances (NF) as well as the

workload of the committers (DSC) have a non-negligible effect.

As such, on the one hand we can confirm previous findings that

showed historical and socio-technical factors as relevant to manage

code smells [62, 66]. On the other hand, our findings suggest that

these metrics may possibly be useful for detecting code smells in

the first place or even filtering the results of currently available

detectors, so that they may give recommendations that are closer

to the developer’s perceived criticality. Finally, the lines of code

also contributes to the model, being however not the strongest

factor—confirming again previous findings in the field [62, 64].

Table 5: RQ2. InformationGain of the independent variables
of our approach. For space limits, onlymetrics providing sig-
nificant contributions are reported.

Code smell Metric Mean SK-ESD

Blob

RFC 0.65 68

LCOM5 0.57 66

NF 0.56 66

DSC 0.55 64

CBO 0.45 64

WMC 0.42 64

C3 0.35 45

LOC 0.34 41

Complex Class

CBO 0.59 71

WMC 0.54 69

LCOM5 0.54 69

Read. 0.54 69

NC 0.50 54

DSC. 0.49 51

EXP 0.27 33

RFC. 0.25 31

Spaghetti Code

Read. 0.65 53

NF 0.57 46

C3 0.38 41

Shotgun Surgery

NC 0.32 44

LCOM5 0.31 39

AVG_CS 0.24 33

Pers. 0.17 21

When considering Complex Class, a similar discussion can be

done. While the most impactful metrics concern with the structure

of the code (CBO, WMC, LCOM5), other metrics seem to have a

Developer-Driven Code Smell Prioritization MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

relevant effect on the classification model. In particular, readability

is the strongest factor after code metrics, indicating that developers

consider comprehensibility important when prioritizing this code

smell. Other relevant factors are the number of previous changes of

classes (NC) and socio-technical aspects like experience and work-

load of the committers (EXP, DSC): again, this result confirms that

the management of code smells may require additional information

than structural aspects of source code [91].

Surprisingly, when considering Spaghetti Code instances we no-
ticed that no structural factors strongly influence the classification.

Readability is indeed the key factor leading developers to priori-

tize instances of this smell, followed by the number of previous

defects affecting those classes (NF) and by the conceptual cohesion

of classes (C3). Hence, it seems that developers prioritize instances

of this smell that are semantically incoherent or that suffered from

defects in the past. Our findings could again be used by code smell

detection and filtering approaches to tune the list of recommenda-

tions to provide to developers.

Finally, the prioritization of the Shotgun Surgery smell is mainly

driven by process-related factors. Not only the number of changes

(NC) is themost powerfulmetric, but also the number of co-changing

classes (AVG_CS) turned out to be relevant. Also, this is the only

case in which the persistence of the smell (Pers.) appeared to im-

pact the classification. These result seem to confirm that developers

assess the severity of this code smell based on the intensity of the

problem [61, 85], i.e., when number of changes or co-changing

classes is high or when the problem is constantly affecting the

codebase. Furthermore, the cohesion of the class (LCOM5) affects

the classification, even though at a lower extent if compared to the

contribution given for other code smell types.

Finding 2. The developer’s perceived criticality of code
smells represents a multi-faceted problem that can be tackled
considering a mix of metrics having different nature (e.g.,
structural or historical) and working at various levels of
granularity (e.g., process or socio-technical aspects).

5.3 RQ3. Comparison with the state of the art
We compared the proposed model with a baseline. The results are

reported in Tables 3 and 4, where we show confusion matrices and

weighted performance values obtained when running the baseline

against our dataset, respectively. Also in this case, we report the

results obtained with the best classifier, that in this case was Logistic

Regression—confirming the findings of the original authors [25].

In the first place, we can notice that the baseline is decently

accurate and, indeed, its F-Measure values on Blob, Complex Class,
and Spaghetti Code range between 63% and 84%. The exception is

Shotgun Surgery (F-Measure=35%), where the baseline fails the clas-

sification in most of the cases. Despite its performance, however,

the baseline never outperforms our technique. While this is espe-

cially true when considering Shotgun Surgery (-37% of F-Measure,

-17% of AUC-ROC), also for the other code smells the difference is

non-negligible: the F-Measure is 19%, 17%, and 5% lower than our

model for Blob, Complex Class, and Spaghetti Code, respectively.

The main reason for these differences is likely imputable to the

metrics employed. As shown in RQ2, structural aspects of source

code can only partially contribute to the classification of the devel-

oper’s perceived criticality of code smells and, as such, the inclusion

of factors covering other dimensions better fits the problem.

Of particular interest is the analysis of the results for the Spaghetti
Code smell, where the baseline has the highest performance despite

the fact that our findings in RQ2 reported structural aspects to

be negligible. The baseline employs a variety of metrics that can

capture different aspects of source code (e.g., coupling or cohesion)

under different angles (e.g., by considering the lines of codewith and
without access methods). Some of the complexity metrics are highly

correlated to readability of source code and its fault-proneness and,

as such, they have the effect of “simulating” the presence of metrics

like the one found to be relevant in RQ2. This claim is supported

by an additional analysis in which we compute the correlation (us-

ing the Spearman’s test) between the metrics used by the baseline

and those which turned out to be relevant in our previous analysis

(Read., NF, and C3): we discovered that five of them (i.e., WMC-

NAMM_type, NOMNAMM_type, AMW_type, CFNAMM_type, and

num_final_static_attributes) are highly correlated, i.e., ρ>0.7, to at

least one of the variables found in RQ2.

In conclusion, based on our findings we can claim that an ap-

proach solely based on structural metrics cannot be as accurate in

the classification of the perceived criticality of code smells as a tech-

nique that includes information coming from other sources, con-

firming again that the problem of code smell management should

be tackled in a more comprehensive manner.

Finding 3. The proposed model is, on average, 20%more ac-
curate than the baseline when classifying the perceived crit-
icality of code smells. Only in the case of Spaghetti Code the
usage of multiple structural metrics can lead to results simi-
lar to those of our model.

6 THREATS TO VALIDITY
Some threats may have influenced our empirical study. This section

discusses and overviews how we addressed them.

Threats to construct validity. Potential issues related to the re-

lationship between theory and observation firstly refer to the

dataset exploited in the study. Our goal was to define a developer-

driven prioritization approach, so we needed to collect the devel-

oper’s perceived criticality of a set of code smells. To this aim, we

followed a similar strategy as previous work [66, 79]: we moni-

tored nine large open-source systems for 6 months and inquired

the original developers as soon as they modified smelly classes

in order to let them rank how harmful the involved code smells

actually were. In so doing, we adopted some precautions. Firstly,

we detected code smells using state-of-the-art tools [52, 62] that

showed high accuracy, yet checking their output to remove false

positives; in any case, we cannot exclude the presence of false

negatives since these detectors have been validated on different

datasets. Secondly, we asked preliminary questions on whether

they perceived the presence of a design issue in the proposed

class and recognized the same problem they were contacted for.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Pecorelli et al.

These questions aimed at ensuring that developers were really

aware of the code smells they were assessing and, thus, could

provide us with reliable feedback. Of course, we are aware that

some of the developers might be peripheral contributors without

the experience required to assess the harmfulness of code smells.

To account for this aspect, we conducted a follow-up verification

of the role of the subject developers within their corresponding

projects: to this aim, we computed the number of commits they

performed (i) over the entire change history of their projects and

(ii) on the specific classes they were contacted for. As a result,

we discovered that all our respondents have contributions that

exceed the median number of commits made by all project’s de-

velopers both in terms of changes done over the history and on

the smelly classes objects of our inquiry. In conclusion, we can

argue that the dataset collection method is sound and allows a

reliable analysis of the perceived code smells criticality.

Another threat in this category may be related to the granular-

ity of the considered code smells, i.e., they are all computed at

class-level. We focused on this family of smell since we aimed at

characterizing the quality of classes under different angles using

various metrics, with the final aim of assessing how well these

metrics could be adopted to predict the perceived criticality of

code smells. The selection of method-level design issues may

have deserved a further, different investigation into the metrics

that could capture the quality of methods.

Still related to the dataset, the perceived criticality assigned by

developers when building the dataset might have been influenced

by the co-occurrence of multiple code smells [1]. We mitigated

this problem by presenting to developers classes affected by single

code smell types among those considered in this paper, e.g., we
only presented cases where a Blob did not occur with any of the

other smells considered in the study. Nevertheless, we cannot

exclude the presence of further design issues among those that we

did not consider in the paper. As such, a larger experimentation

would be desirable to corroborate our observations.

Finally, it is worth remarking that most of the independent met-

rics computed as well as the algorithms exploited (e.g., the ma-

chine learners) were computed by relying on well-tested, pub-

licly available tools. This allowed us to reduce biases due to

re-implementation. Their selection was based on convenience,

and particularly on the skills that the authors have with them.

There are a few exceptions, like the tool employed to assess the

persistence and refactorability of code smells: in those cases, we

relied on established guidelines (e.g., the refactorability metric

has been implemented by taking into account previous research

[92]). To verify the correct (re-)implementation, we also manually

checked the output of our tools: we randomly verified a sample of

30 cases to assess whether (1) the number of refactoring actions

identified by the tool matched the refactorings that we could

identify by accessing the classes’ history, (2) the persistence of

the smell was actually in line with the result given by the tool.

This analysis gives us confidence of the reliability of our tooling.

Threats to conclusion validity. As for the relation between treat-
ment and outcome, we relied on a set of widely-used metrics

to evaluate the experimented techniques (e.g., precision, recall).
Secondly, we exploited appropriate statistical tests to support

our findings. As for the machine learning models experimented,

the reported results may have been biased by the selected 10-fold

cross-validation strategy. Previous research [87] has criticized it

because the randomness with which it creates training and test

data may lead to an under- or over-estimation of the real per-

formance of a machine learning model—this is especially true in

the case of classification algorithms [87]. To verify this possible

bias, we conducted an additional analysis following the recom-

mendation by Hall et al. [32]: we ran the experimented models

multiple times and assessed the stability of the predictions per-

formed. In particular, we ran a 10 times 10-fold cross-validation

and measured how many times the classification for a certain

smell instance changed in those runs. We observed that in 93% of

the cases, such predictions remained stable, thus allowing us to

claim that the validation strategy did not bias the core findings

of the study. As a final note, when building the machine learn-

ers, we also took into account common confounding effects like

multi-collinearity and lack of hyper-parameter configurations.

Threats to external validity. As for the generalizability of the

results, there are two main considerations. In the first place, we

took into account four code smell types. On the one hand, we

were somehow required to reduce the scope of the problem,

given the amount of effort/time that we required to the involved

developers. On the other hand, an extension targeting more code

smells is still desirable and part of our future research agenda.

The second point is related to the number of systems consid-

ered. We limited ourselves to nine open-source projects from two

ecosystems. Yet, these systems are highly active and have been

widely studied in the past by the research community, especially

because they have various characteristics. Nevertheless, we are

aware that our findings might not hold on to other (eco-)systems

or in an industrial setting. It is our goal to replicate the paper in

other contexts and corroborate the findings reported so far.

7 CONCLUSION
This paper presented a novel code smell prioritization approach

based on the developers’ perceived criticality of code smells. We

exploited several aspects related to code quality to predict the criti-

cality of code smells, computed by collecting feedback from original

developers about their perception of 1,332 code smell instances.

Then, we applied several machine learning techniques to classify

the code smell criticality in a three-level variable, and compared

their results with a state-of-the-art tool. The results reported Ran-

dom Forest to be the best machine learning algorithm with an

F-measure ranging between 72% and 85%. Moreover, we found that

our approach is, on average, 20% more accurate than the considered

baseline when classifying the perceived criticality of code smells.

Future work includes (1) further improvements of the approach,

e.g., by considering social network analysis metrics, (2) an experi-

mentation with a larger number of code smells, and (3) an in-vivo
assessment of our technique.

ACKNOWLEDGMENTS
Fabio gratefully acknowledges the help and financial support of

the Swiss National Science Foundation through the SNF Project No.

PZ00P2_186090 (TED).

Developer-Driven Code Smell Prioritization MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
[1] Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano Antoniol.

2011. An empirical study of the impact of two antipatterns, blob and spaghetti

code, on program comprehension. In Software maintenance and reengineering
(CSMR), 2011 15th European conference on. 181–190.

[2] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association

rules between sets of items in large databases. In Acm sigmod record, Vol. 22.
ACM, 207–216.

[3] Roberta Arcoverde, Everton Guimarães, Isela Macía, Alessandro Garcia, and

Yuanfang Cai. 2013. Prioritization of code anomalies based on architecture

sensitiveness. In 2013 27th Brazilian Symposium on Software Engineering. IEEE,
69–78.

[4] Muhammad Ilyas Azeem, Fabio Palomba, Lin Shi, and Qing Wang. 2019. Machine

learning techniques for code smell detection: A systematic literature review and

meta-analysis. Information and Software Technology (2019).

[5] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. 1999. Modern information
retrieval. Vol. 463. ACM press New York.

[6] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and

Fabio Palomba. 2015. An experimental investigation on the innate relationship

between quality and refactoring. Journal of Systems and Software 107 (2015),

1–14.

[7] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter

optimization. Journal of Machine Learning Research 13, Feb (2012), 281–305.

[8] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and

Premkumar Devanbu. 2011. Don’t touch my code!: examining the effects of

ownership on software quality. In Proceedings of the 19th ACM SIGSOFT sympo-
sium and the 13th European conference on Foundations of software engineering.
ACM, 4–14.

[9] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe

Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya, et al. 2010.

Managing technical debt in software-reliant systems. In Proceedings of the FSE/SDP
workshop on Future of software engineering research. ACM, 47–52.

[10] William H Brown, Raphael C Malveau, Hays W McCormick, and Thomas J

Mowbray. 1998. AntiPatterns: refactoring software, architectures, and projects in
crisis. John Wiley & Sons, Inc.

[11] Raymond PL Buse and Westley R Weimer. 2010. Learning a metric for code

readability. IEEE Transactions on Software Engineering 36, 4 (2010), 546–558.

[12] Gemma Catolino, Fabio Palomba, Andrea De Lucia, Filomena Ferrucci, and Andy

Zaidman. [n. d.]. Enhancing change prediction models using developer-related

factors. Journal of Systems and Software 143 ([n. d.]), 14–28.
[13] Gemma Catolino, Fabio Palomba, Francesca Arcelli Fontana, Andrea De Lucia,

Andy Zaidman, and Filomena Ferrucci. 2019. Improving change predictionmodels

with code smell-related information. Empirical Software Engineering (02 Aug

2019). https://doi.org/10.1007/s10664-019-09739-0

[14] Gemma Catolino, Fabio Palomba, Andy Zaidman, and Filomena Ferrucci. 2019.

How the Experience of Development Teams Relates to Assertion Density of

Test Classes. In 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 223–234.

[15] Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite for object

oriented design. IEEE Transactions on software engineering 20, 6 (1994), 476–493.

[16] William J Clancey. 1984. Classification problem solving. Stanford University

Stanford, CA.

[17] Marco D’Ambros, Alberto Bacchelli, and Michele Lanza. 2010. On the impact of

design flaws on software defects. In 2010 10th International Conference on Quality
Software. IEEE, 23–31.

[18] Elder Vicente de Paulo Sobrinho, Andrea De Lucia, and Marcelo de Almeida Maia.

2018. A systematic literature review on bad smells—5 W’s: which, when, what,

who, where. IEEE Transactions on Software Engineering (2018).

[19] Dario Di Nucci, Fabio Palomba, Giuseppe De Rosa, Gabriele Bavota, Rocco Oliveto,

and Andrea De Lucia. 2017. A developer centered bug prediction model. IEEE
Transactions on Software Engineering (2017).

[20] Dario Di Nucci, Fabio Palomba, Damian A Tamburri, Alexander Serebrenik, and

Andrea De Lucia. 2018. Detecting code smells using machine learning techniques:

are we there yet?. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 612–621.

[21] Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva, and Eduardo

Figueiredo. 2016. A review-based comparative study of bad smell detection tools.

In Proceedings of the 20th International Conference on Evaluation and Assessment
in Software Engineering. ACM, 18.

[22] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeorgiou.

2012. Identification and Application of Extract Class Refactorings in Object-

oriented Systems. Journal of Systems and Software 85, 10 (Oct. 2012), 2241–2260.
https://doi.org/10.1016/j.jss.2012.04.013

[23] Francesca Arcelli Fontana, Jens Dietrich, Bartosz Walter, Aiko Yamashita, and

Marco Zanoni. 2016. Antipattern and code smell false positives: Preliminary

conceptualization and classification. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), Vol. 1. IEEE, 609–613.

[24] Francesca Arcelli Fontana, Mika V Mäntylä, Marco Zanoni, and Alessandro

Marino. 2016. Comparing and experimenting machine learning techniques for

code smell detection. Empirical Software Engineering 21, 3 (2016), 1143–1191.

[25] Francesca Arcelli Fontana and Marco Zanoni. 2017. Code smell severity classifi-

cation using machine learning techniques. Knowledge-Based Systems 128 (2017),
43–58.

[26] Martin Fowler and Kent Beck. 1999. Refactoring: improving the design of existing
code. Addison-Wesley Professional.

[27] Tudor Girba, Stéphane Ducasse, and Michele Lanza. 2004. Yesterday’s weather:

Guiding early reverse engineering efforts by summarizing the evolution of

changes. In 20th IEEE International Conference on Software Maintenance, 2004.
Proceedings. IEEE, 40–49.

[28] Giovanni Grano, Fabio Palomba, and Harald C Gall. 2019. Lightweight Assess-

ment of Test-Case Effectiveness using Source-Code-Quality Indicators. IEEE
Transactions on Software Engineering (2019).

[29] Robert J. Grissom and John J. Kim. 2005. Effect sizes for research: A broad practical
approach (2nd edition ed.). Lawrence Earlbaum Associates.

[30] David Gunning. 2017. Explainable artificial intelligence (xai). Defense Advanced
Research Projects Agency (DARPA), nd Web 2 (2017).

[31] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,

and Ian H. Witten. 2009. The WEKA Data Mining Software: An Update. SIGKDD
Explor. Newsl. 11, 1 (Nov. 2009), 10–18. https://doi.org/10.1145/1656274.1656278

[32] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. 2011.

Developing fault-prediction models: What the research can show industry. IEEE
software 28, 6 (2011), 96–99.

[33] Ahmed E Hassan. 2009. Predicting faults using the complexity of code changes.

In Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference on.
IEEE, 78–88.

[34] Brian Henderson-Sellers, Larry L Constantine, and IanMGraham. 1996. Coupling

and cohesion (towards a valid metrics suite for object-oriented analysis and

design). Object oriented systems 3, 3 (1996), 143–158.
[35] Suhas Kabinna, Weiyi Shang, Cor-Paul Bezemer, and Ahmed E Hassan. 2016.

Examining the stability of logging statements. In Software Analysis, Evolution,
and Reengineering (SANER), 2016 IEEE 23rd Int’l Conf. on, Vol. 1. IEEE, 326–337.

[36] Amandeep Kaur, Sushma Jain, and Shivani Goel. 2017. A support vector machine

based approach for code smell detection. In 2017 International Conference on
Machine Learning and Data Science (MLDS). IEEE, 9–14.

[37] Marouane Kessentini, Houari Sahraoui, Mounir Boukadoum, and Manuel Wim-

mer. 2011. Search-based design defects detection by example. In International
Conference on Fundamental Approaches to Software Engineering. Springer, 401–
415.

[38] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano

Antoniol. 2012. An exploratory study of the impact of antipatterns on class

change-and fault-proneness. Empirical Software Engineering 17, 3 (2012), 243–

275.

[39] Foutse Khomh, Stéphane Vaucher, Yann-Gaël Guéhéneuc, and Houari Sahraoui.

2009. A bayesian approach for the detection of code and design smells. In 2009
Ninth International Conference on Quality Software. IEEE, 305–314.

[40] Ron Kohavi et al. 1995. A study of cross-validation and bootstrap for accuracy

estimation and model selection. In Ijcai, Vol. 14. Montreal, Canada, 1137–1145.

[41] Heng Li, Weiyi Shang, Ying Zou, and Ahmed E Hassan. 2016. Towards just-in-

time suggestions for log changes. Empirical Software Engineering (2016), 1–35.

[42] Wei Li and Sallie Henry. 1993. Maintenance metrics for the object oriented

paradigm. In [1993] Proceedings First International Software Metrics Symposium.

IEEE, 52–60.

[43] Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of
psychology (1932).

[44] Huan Liu and Hiroshi Motoda. 2012. Feature selection for knowledge discovery
and data mining. Vol. 454. Springer Science & Business Media.

[45] Lech Madeyski and Marian Jureczko. 2015. Which process metrics can signifi-

cantly improve defect prediction models? An empirical study. Software Quality
Journal 23, 3 (2015), 393–422.

[46] Usman Mansoor, Marouane Kessentini, Bruce R Maxim, and Kalyanmoy Deb.

2017. Multi-objective code-smells detection using good and bad design examples.

Software Quality Journal 25, 2 (2017), 529–552.
[47] Mika Mantyla, Jari Vanhanen, and Casper Lassenius. 2003. A taxonomy and

an initial empirical study of bad smells in code. In International Conference on
Software Maintenance, 2003. ICSM 2003. Proceedings. IEEE, 381–384.

[48] Andrian Marcus and Denys Poshyvanyk. 2005. The conceptual cohesion of

classes. In 21st IEEE International Conference on Software Maintenance (ICSM’05).
IEEE, 133–142.

[49] Radu Marinescu. 2012. Assessing technical debt by identifying design flaws in

software systems. IBM Journal of Research and Development 56, 5 (2012), 9–1.
[50] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on software

Engineering 4 (1976), 308–320.

[51] Tom Mens and Tom Tourwé. 2004. A survey of software refactoring. IEEE
Transactions on software engineering 30, 2 (2004), 126–139.

[52] Naouel Moha, Yann-Gael Gueheneuc, Laurence Duchien, and Anne-Francoise

Le Meur. 2010. Decor: A method for the specification and detection of code and

https://doi.org/10.1007/s10664-019-09739-0
https://doi.org/10.1016/j.jss.2012.04.013
https://doi.org/10.1145/1656274.1656278

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Pecorelli et al.

design smells. IEEE Transactions on Software Engineering 36, 1 (2010), 20–36.

[53] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. 2006. Mining metrics

to predict component failures. In Proceedings of the 28th international conference
on Software engineering. ACM, 452–461.

[54] John Neter, Michael H Kutner, Christopher J Nachtsheim, and William Wasser-

man. 1996. Applied linear statistical models. Vol. 4. Irwin Chicago.

[55] Raymond S Nickerson. 1998. Confirmation bias: A ubiquitous phenomenon in

many guises. Review of general psychology 2, 2 (1998), 175–220.

[56] Steffen Olbrich, Daniela S Cruzes, Victor Basili, and Nico Zazworka. 2009. The

evolution and impact of code smells: A case study of two open source systems.

In 2009 3rd international symposium on empirical software engineering and mea-
surement. IEEE, 390–400.

[57] Roberto Oliveira, Leonardo Sousa, Rafael de Mello, Natasha Valentim, Adriana

Lopes, Tayana Conte, Alessandro Garcia, Edson Oliveira, and Carlos Lucena. 2017.

Collaborative identification of code smells: a multi-case study. In Proceedings of
the 39th International Conference on Software Engineering: Software Engineering
in Practice Track. IEEE Press, 33–42.

[58] Juliana Padilha, Juliana Pereira, Eduardo Figueiredo, Jussara Almeida, Alessandro

Garcia, and Cláudio Sant’Anna. 2014. On the effectiveness of concern metrics to

detect code smells: An empirical study. In International Conference on Advanced
Information Systems Engineering. Springer, 656–671.

[59] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco

Oliveto, and Andrea De Lucia. 2017. On the diffuseness and the impact on

maintainability of code smells: a large scale empirical investigation. Empirical
Software Engineering (2017), 1–34.

[60] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco

Oliveto, and Andrea De Lucia. 2018. A large-scale empirical study on the lifecycle

of code smell co-occurrences. Information and Software Technology 99 (2018),

1–10.

[61] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and An-

drea De Lucia. 2014. Do they really smell bad? a study on developers’ perception

of bad code smells. In Software maintenance and evolution (ICSME), 2014 IEEE
international conference on. IEEE, 101–110.

[62] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Denys

Poshyvanyk, and Andrea De Lucia. 2015. Mining version histories for detecting

code smells. IEEE Transactions on Software Engineering 41, 5 (2015), 462–489.

[63] Fabio Palomba, Andrea De Lucia, Gabriele Bavota, and Rocco Oliveto. 2014.

Anti-pattern detection: Methods, challenges, and open issues. In Advances in
Computers. Vol. 95. Elsevier, 201–238.

[64] Fabio Palomba, Annibale Panichella, Andrea De Lucia, Rocco Oliveto, and Andy

Zaidman. 2016. A textual-based technique for smell detection. In Program Com-
prehension (ICPC), 2016 IEEE 24th International Conference on. IEEE, 1–10.

[65] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and Andrea

De Lucia. 2017. The scent of a smell: An extensive comparison between textual

and structural smells. IEEE Transactions on Software Engineering 44, 10 (2017),

977–1000.

[66] Fabio Palomba, Damian Andrew Andrew Tamburri, Francesca Arcelli Fontana,

Rocco Oliveto, Andy Zaidman, and Alexander Serebrenik. 2018. Beyond technical

aspects: How do community smells influence the intensity of code smells? IEEE
transactions on software engineering (2018).

[67] Fabio Palomba, Andy Zaidman, and Andrea De Lucia. 2018. Automatic test

smell detection using information retrieval techniques. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 311–322.

[68] Fabio Palomba, Marco Zanoni, Francesca Arcelli Fontana, Andrea De Lucia,

and Rocco Oliveto. 2017. Toward a smell-aware bug prediction model. IEEE
Transactions on Software Engineering 45, 2 (2017), 194–218.

[69] David Lorge Parnas. 1994. Software aging. In Proceedings of 16th International
Conference on Software Engineering. IEEE, 279–287.

[70] Fabiano Pecorelli, Dario Di Nucci, Coen De Roover, and Andrea De Lucia. 2019.

On the role of data balancing for machine learning-based code smell detection. In

Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning
Techniques for Software Quality Evaluation. 19–24.

[71] Fabiano Pecorelli, Fabio Palomba, Dario Di Nucci, and Andrea De Lucia. 2019.

Comparing heuristic and machine learning approaches for metric-based code

smell detection. In Proceedings of the 27th International Conference on Program
Comprehension. IEEE Press, 93–104.

[72] Fabiano Pecorelli, Fabio Palomba, Foutse Khomh, and Andrea De Lucia. 2020.

Developer-Driven Code Smell Prioritization— Online Appendix. https://figshare.

com/s/94c699da52bb7b897074.

[73] J. Ross Quinlan. 1986. Induction of decision trees. Machine learning 1, 1 (1986),

81–106.

[74] Foyzur Rahman and Premkumar Devanbu. 2013. How, and why, process metrics

are better. In 2013 35th International Conference on Software Engineering (ICSE).
IEEE, 432–441.

[75] A Ananda Rao and K Narendar Reddy. 2007. Detecting bad smells in object

oriented design using design change propagation probability matrix 1. (2007).

[76] A. J. Scott and M. Knott. 1974. A cluster analysis method for grouping means in

the analysis of variance. Biometrics 30 (1974), 507–512.
[77] Claude E Shannon. 1951. Prediction and entropy of printed English. Bell system

technical journal 30, 1 (1951), 50–64.
[78] Forrest Shull, Davide Falessi, Carolyn Seaman, Madeline Diep, and Lucas Layman.

2013. Technical debt: Showing the way for better transfer of empirical results. In

Perspectives on the Future of Software Engineering. Springer, 179–190.
[79] Danilo Silva, Nikolaos Tsantalis, andMarco Tulio Valente. 2016. Whywe refactor?

confessions of github contributors. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 858–870.

[80] Dag IK Sjøberg, Aiko Yamashita, Bente CD Anda, Audris Mockus, and Tore

Dybå. 2012. Quantifying the effect of code smells on maintenance effort. IEEE
Transactions on Software Engineering 39, 8 (2012), 1144–1156.

[81] Zéphyrin Soh, Aiko Yamashita, Foutse Khomh, and Yann-Gaël Guéhéneuc. 2016.

Do code smells impact the effort of different maintenance programming activi-

ties?. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Vol. 1. IEEE, 393–402.

[82] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. Pydriller: Python

framework for mining software repositories. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ACM, 908–911.

[83] Diomidis Spinellis. 2005. Tool writing: a forgotten art?(software tools). IEEE
Software 22, 4 (2005), 9–11.

[84] Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Georgios L Bleris.

2002. Code quality analysis in open source software development. Information
Systems Journal 12, 1 (2002), 43–60.

[85] Davide Taibi, Andrea Janes, and Valentina Lenarduzzi. 2017. How developers

perceive smells in source code: A replicated study. Information and Software
Technology 92 (2017), 223–235.

[86] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, Akinori Ihara,

and Kenichi Matsumoto. 2015. The impact of mislabelling on the performance

and interpretation of defect prediction models. In Software Engineering (ICSE),
2015 IEEE/ACM 37th IEEE International Conference on, Vol. 1. IEEE, 812–823.

[87] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi

Matsumoto. 2017. An empirical comparison of model validation techniques for

defect prediction models. IEEE Transactions on Software Engineering 43, 1 (2017),

1–18.

[88] Budd Timothy. 2008. Introduction to object-oriented programming. Pearson

Education India.

[89] Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2009. Identification of move

method refactoring opportunities. IEEE Transactions on Software Engineering 35,

3 (2009), 347–367.

[90] Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2011. Ranking refactoring

suggestions based on historical volatility. In 2011 15th European Conference on
Software Maintenance and Reengineering. IEEE, 25–34.

[91] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano

Di Penta, Andrea De Lucia, and Denys Poshyvanyk. 2017. When and why your

code starts to smell bad (and whether the smells go away). IEEE Transactions on
Software Engineering 43, 11 (2017), 1063–1088.

[92] Carmine Vassallo, Giovanni Grano, Fabio Palomba, Harald C Gall, and Alberto

Bacchelli. 2019. A large-scale empirical exploration on refactoring activities in

open source software projects. Science of Computer Programming 180 (2019),

1–15.

[93] Santiago A Vidal, Claudia Marcos, and J Andrés Díaz-Pace. 2016. An approach

to prioritize code smells for refactoring. Automated Software Engineering 23, 3

(2016), 501–532.

[94] Aiko Yamashita and Leon Moonen. 2012. Do code smells reflect important

maintainability aspects?. In 2012 28th IEEE international conference on software
maintenance (ICSM). IEEE, 306–315.

[95] Aiko Yamashita and Leon Moonen. 2013. Do developers care about code smells?

An exploratory survey. In 2013 20th Working Conference on Reverse Engineering
(WCRE). IEEE, 242–251.

https://figshare.com/s/94c699da52bb7b897074
https://figshare.com/s/94c699da52bb7b897074

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset Construction
	3.1 Selecting projects
	3.2 Selecting code smells
	3.3 Selecting code smell detectors
	3.4 Collecting the criticality of code smells

	4 A Novel Code Smells Prioritization Approach and Its Evaluation
	4.1 Research Questions
	4.2 RQ1. Defining and assessing the performance of the prioritization approach
	4.3 RQ2. Explaining the Proposed Approach
	4.4 RQ3. Comparison with the state of the art

	5 Results and Discussion
	5.1 RQ1. The Performance of our Model
	5.2 RQ2. Features Contributing to the Model
	5.3 RQ3. Comparison with the state of the art

	6 Threats to Validity
	7 Conclusion
	References

