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ABSTRACT
Nowadays, mobile applications (a.k.a., apps) are used by over two
billion users for every type of need, including social and emergency
connectivity. Their pervasiveness in today’s world has inspired the
software testing research community in devising approaches to
allow developers to better test their apps and improve the quality of
the tests being developed. In spite of this research effort, we still no-
tice a lack of empirical studies aiming at assessing the actual quality
of test cases developed by mobile developers: this perspective could
provide evidence-based findings on the current status of testing in
the wild as well as on the future research directions in the field. As
such, we performed a large-scale empirical study targeting 1,780
open-source Android apps and aiming at assessing (1) the extent to
which these apps are actually tested, (2) how well-designed are the
available tests, and (3) what is their effectiveness. The key results
of our study show that mobile developers still tend not to properly
test their apps. Furthermore, we discovered that the test cases of
the considered apps have a low (i) design quality, both in terms
of test code metrics and test smells, and (ii) effectiveness when
considering code coverage as well as assertion density.
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1 INTRODUCTION
The usage of mobile devices such as smartphones and tablets is
playing a central role in everyday life [51]. This is also reflected in
the growth of the app industry: more than 5 million mobile apps
are available in popular marketplaces like Apple App Store and
Google Play Store, for a total of over 205 billion downloads and
12 million mobile developers maintaining them [65, 82]. In such
a context, developing and delivering high-quality apps represents
a strict requirement for developers to stay on the market, keep
gaining users, and maintain a high commercial success [48, 51, 68].

Software testing is one of the most relevant and well-established
methods to control for source code quality [61] and to enable the
understandability of the functionalities being implemented in a
system [80]. This activity is even more pressing in the context of
mobile computing [60], where continuous releases of an app have
the high risk of introducing defects and decrease software reliability
[52, 64]. At the same time, the unique characteristics of mobile apps,
e.g., the fact that users can interact via touch-screen and a number of
sensors, present brand new challenges for developers when testing
the source code of their applications [46].

All these reasons have led the research community to focus on
testing best practices and techniques that could better support mo-
bile developers [51]; these concern several papers on Graphical User
Interface (GUI) testing [30, 48, 49] as well as on the definition of suit-
able frameworks to ease testing activities [19, 23]. However, despite
the effort spent so far, the solutions available still present limita-
tions that prevent the realization of a comprehensive, effective, and
practical automated testing approach [14, 36]. As a consequence,
mobile developers still mostly conduct testing activities manually
[36, 39]. Looking at the available literature, we notice that this as-
pect has been barely treated so far: while many researchers focused
on whether developers use tools for automating testing activities
[16, 39, 79], very few of them have analyzed how mobile applica-
tions are actually tested [39], what is the percentage of executable
tests within mobile apps and, more importantly, their quality in
terms of code design metrics and effectiveness (e.g., coverage).

Investigating mobile app testing from the perspective of manu-
ally written tests may provide important insights to the research
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community. Indeed, should mobile apps be well-tested and/or man-
ually written tests be already effective, the urgency of designing
automated approaches could be toned down while focusing on how
to complement manually written tests and provide developers with
information useful to make tests more effective (e.g., which test data
should be used to exercise certain boundary conditions). On the
contrary, the empirically-grounded results may serve to practition-
ers as an additional proof of the need for using automatic solutions
as well as further supporting the testing research community.

For the reasons above, in this paper we propose a large-scale
empirical study on the prominence, quality, and effectiveness of
the tests manually written by mobile developers. Particularly, we
consider a dataset of 1,780 open-source Android applications and
extract test cases written by developers with the first aim of under-
standing how many and which types of tests are actually available
as well as which kinds of production classes are more exercised. In
the second step, we focus on the design of these tests, intended as
test code quality metrics and smells. Finally, we measure the effec-
tiveness of mobile test cases, considering two widely-used metrics
such as code coverage and assertion density.

Our empirical study clearly reports that mobile applications are
not sufficiently tested and, indeed, we find a median of just 2 test
suites per app. Furthermore, these tests are mostly at unit-level and
concern with the application logic, while GUI-related classes and
storage of the considered apps remain mostly untested. As for the
test code design, we discovered that most of them are affected by
some form of test smells, despite having a metric profile that would
not suggest the low design quality. Finally, all the effectiveness
metrics measured are low, meaning that tests are likely to have
a poor fault detection capability. The results of our paper allow
us to delineate a number of open challenges in the field of mobile
testing, especially related to the need for automated techniques
able to assist developers when writing and maintaining tests, but
also for scaling testing approaches at integration and system level
and easing the applicability of non-functional testing.

Structure of the paper. The remaining of the manuscript is as fol-
low. Section 2 presents the research questions driving our study and
the dataset exploited. Sections 3, 4, and 5 describe the methodologi-
cal details and results of the three research questions formulated. In
Section 6 we further discuss the main findings achieved, the implica-
tions of our study as well as its limitations. Section 7 overviews the
related literature, while Section 8 concludes the paper and outlines
our future research agenda.

2 RESEARCH QUESTIONS AND CONTEXT
SELECTION

The goal of the empirical study is to assess prominence, quality,
and effectiveness of test cases written by mobile developers, with
the purpose of understanding testing practices and properties in the
wild, i.e., to what extent mobile apps are tested in practice and what
is the outcome of such testing. The perspective is of both practition-
ers and researchers: the former are interested in observing how
effective are their testing practices, while the latter are interested
in understanding what are the instruments that mobile developers
would need to improve the quality of their test suites. In this sec-
tion, we provide an overview of the research questions driving our

empirical investigation and present some relevant information on
the dataset employed to address them.

2.1 Research Questions
Our study was structured around three main research questions
(RQs). We started by considering some recent findings in the field
of mobile software testing [10, 30, 36, 46, 56, 60], which showed
that writing tests may be challenging for developers because of (i)
the lack of appropriate testing tools and (ii) limited knowledge of
testing practices or even willingness of developers to write tests.
As such, we first analyzed the prominence of test cases in mobile
applications, particularly looking at how many tests are actually
developed by developers, which types of tests are implemented and
what are the kind of production classes whose functionalities tend
to be exercised more. Thus, we asked:

RQ1. To what extent are test suites developed in the context of
mobile apps?

It is worth noting that, by addressing the first research question,
we also provided a larger ecological validity to some preliminary
findings [16, 36] on the extent to whichmobile apps are tested. After
this first analysis, we started a finer-grained investigation of test
cases. On the one hand, we considered their design, as measured
by test code quality metrics [13, 69] and test smells [55, 85, 88]. On
the other hand, we took into account the effectiveness of test cases
in terms of code coverage [29] and assertion density [11, 43]. For
these reasons, we defined the following research questions:

RQ2. What is the design quality of test cases developed in mobile
apps?

RQ3. What is the effectiveness of test cases developed in mobile
apps?

The analyses of these research questions allowed us to provide
a detailed overview of the extent, quality, and effectiveness of tests
available in mobile applications, characteristics that have been
shown to have a strong impact on the ability of tests to detect faults
in production code [35, 72, 81].

2.2 Context of the Study
The context of the empirical study consisted of 1,780 open-source
Android apps gathered by mining F-Droid,1 a repository of free
and open-source mobile applications that has been widely em-
ployed in the past [14, 37, 58, 70, 78] and that contains a set of
applications that enables a good generalizability of the findings
with respect to the overall population of free and open-source mo-
bile apps [19, 39, 42, 78]. It is important to note that, while F-Droid
contains over 3,000 apps, we narrowed our selection in order to
only consider repositories on Github;2 furthermore, we manually
excluded duplicated apps and forks of those already existing in
the repository. Based on these filters, we ended up with the final

1https://f-droid.org
2https://github.com
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1,780 open-source mobile apps, whose names and characteristics
are reported in our online appendix [8].

3 RQ1 - ON THE PROMINENCE OF TEST
CASES IN MOBILE APPS

This section discusses the research methodology and the results
achieved when investigating the prominence of test cases in the
considered set of mobile apps.

3.1 Research Methodology
To address RQ1, we first quantified the number of test classes avail-
able for each of the apps in our dataset. Starting from their Github
repositories, we cloned the apps locally and, afterwards, we per-
formed an exhaustive search through their packages in order to
extract classes having “Test” as prefix or suffix—note that we did
not limit the search to classes explicitly using the JUnit frame-
work since some categories of tests (e.g., UI test cases) may be not
developed using it.

As a result of this search process, we computed the number of
test classes and methods per app, which corresponds to the number
of test suites and test cases available in a mobile application. Fur-
thermore, we proceeded with a more detailed analysis of these tests
that aimed at classifying them according to their granularity (e.g.,
unit vs. integration) and type (e.g., performance). As an automatic
classification was not possible, we manually analyzed all the 5,292
extracted test suites using a grounded theory-based methodology
[77] which involved two of the authors of this paper (from now on,
the inspectors). The process consisted of two steps:
Tuning phase. Initially, the inspectors independently classified
the same set composed of 500 test suites and annotated in a
spreadsheet their granularity and type(s). Whenever possible,
the inspectors relied on the documentation available (e.g., code
comments) to understand the properties of a certain test: for
instance, if developers explicitly stated that the test suite cov-
ered the corresponding production class, then the inspectors
marked it as a unit test. In the other cases, the inspectors relied
on the name of the class as well as analyzed its content to check
if (i) only a production class was exercised, i.e., it was a unit
test, (ii) more classes were involved to verify the interactions
among components, i.e., it was an integration test, or (iii) other-
wise, it was a system test. A similar strategy was employed when
classifying the type: whenever possible, the inspectors relied on
the documentation, while in other cases they manually went
over the code to understand which functional or non-functional
requirement was exercised. To provide the reader with a con-
crete example of the classification made, let consider the case
of the ProgramMemoryTest class of the Finneypoker app. This
test suite aims at assessing the memory consumed by the anima-
tions implemented in the Animator class, which is used by the
PokerActivity, i.e., the main UI class of the app. As such, the
(i) granularity of the test suite was categorized as ‘integration’,
since it did not involve one class in isolation nor the system as
a whole, and (ii) the type was associated to ‘energy’, as the goal
was to assess the consumption of the app in certain conditions.
Through the classification of the same test suites, the inspec-
tors could tune their judgments, find a common way to classify

granularity and type of the considered test suites, and discuss
their disagreements to better understand the reasoning done by
the other inspector. Furthermore, they could compute an ini-
tial coding agreement using the Krippendorff’s alpha Krα [41].
This measured to 0.92, that is considerably higher than the 0.80
standard reference score [1] for Krα .

Classification phase. Once completed the tuning phase, the in-
spectors classified the remaining 4,795 test suites, by analyzing
2,397 and 2,398 each. The outcome allowed the creation of a test
suite granularity and type taxonomy for Android apps, which
we discussed in Section 3.2.

As an additional analysis aiming at addressing our first research
question, we quantified how many and which types of produc-
tion classes are tested. In this way, we could understand whether
developers tend to test only certain specific types of classes (e.g.,
Activity or Fragment classes) as well as how much of the produc-
tion code is covered by a test suite.

To enable this analysis, we first needed to link production to
test classes. We relied on the pattern-matching approach designed
by Van Rompaey and Demeyer [89]: for each test class, it removes
the string “Test” from its name and search the production class
that matches the remaining part of the name. For instance, using
this strategy the test suite MainActivityTest would be linked to the
production class named MainActivity. It is worth mentioning that
this linking approach is lightweight in nature and can scale up
to the number of apps considered in our study; yet, it has shown
similar performance with respect to more sophisticated test-to-code
traceability techniques [89].

Afterwards, we computed the number of production classes
having a corresponding test suite. As for the type of production
classes tested, we performed a first automatic classification, based
on keywords, and then we double-checked the classification manu-
ally. Specifically, we defined a set of keywords that can distinguish
GUI, application logic, and storage components of an Android app.
For instance, the GUI keywords included “activity” and “fragment”,
which generally characterize Activity and Fragment classes used
by developers to develop the graphical interface of the app. For the
sake of space limitations, we included the complete list of keywords
used in this stage in our online appendix [8]. Since this automatic
classification may be erroneous in some cases, one of the authors
of the paper double-checked it and corrected the labels assigned
whenever required.

Table 1: Descriptive Statistics of the mobile apps analyzed.

#Test Suites #Test Cases
Min 0 0
Max 294 3587
Average 7.26 52.30
Median 2 4
Standard Deviation 20.19 211.83

% Apps Tested % Apps Not Tested
41 59
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3.2 Analysis of the Results
Table 1 reports descriptive statistics related to the number of test
suites and test cases available in the considered dataset as well
as the overall number of mobile applications containing at least
one test class. As shown, the first thing that leaps to the eye is
that 59% of apps do not present any test case: as such, we can
confirm the results obtained by previous work which proved that
mobile apps, and in particular Android ones, generally lack of tests
[16, 39, 79]. This finding reinforces the need for further research on
the topic of mobile app testing and, specifically, how to convince
developers—who may be non-experienced with the development
of source code [91]—of the importance of testing their apps, e.g.,
by means of empirical evidence showing how lack of testing may
worsen the quality of mobile apps. For instance, our results moti-
vate and promote investigations aimed at relating test code quality
to change/fault-proneness of the apps [3, 78] or the commercial
success of mobile applications [9, 68]. As an example, let consider
the case of QuickDic, an app that generates dictionary files that
can be used offline; this app has 3,587 lines of code and 662 test
cases. Currently,QuickDic has a rate of 4.5 stars on the Google
Play Store and users reviewed it as a very useful and fast app.
Moreover, developers seem to be very active when replying to the
problems found by users, thus suggesting that a higher attention
to the quality of mobile apps is rewarded with a higher commer-
cial success [68, 70]. Conversely, looking at the Tweetings for
Twitter app, which is a basic Twitter client having 349 lines of
code and no tests, we noticed that it has 2.5 stars and users often
complain about the fact that the app is very slow and has several
problems with push notification; this could potentially reflect the
absence of appropriate testing activities.

Narrowing our attention to the applications that are actually
tested, i.e., the 41% of the apps in our dataset, we computed de-
scriptive statistics related to both test suites and test cases. Table
1 reports the results of this analysis. Looking at the minimum
and maximum number of test cases, we found a high variability
among the considered applications: indeed, the minimum size of
test suites is zero, while it reaches 294 in the best case, with a
median of just two test classes. This result clearly highlights that
even apps having test suites are in general poorly exercised and
would need further support in this activity. The standard deviation
value (211.83) confirms the high variability among the considered
apps. To better understand this result, we conducted an additional
analysis in which we verified whether the low number of tests
is something peculiar of certain categories of apps. As such, we
followed the categorization given by the Google Play Store and
split the dataset into groups of apps based on their category. Af-
terwards, we computed the number of tests for the apps in each
category, also assessing if the number of tests in one of them is
statistically different from the others: to this aim, we computed
the Mann-Whitney test [53], a non-parametric statistical analysis
which can measure the extent to which the differences in terms
of number of test suites available in different app categories are
significant. We found no significance in each of the verified tests,
meaning that the number of test suites does not depend on the
category a mobile app belongs to. This finding suggests that there

exist no particular groups of developers who would benefit from
automated testing methods and/or techniques.

Table 2: Granularity and type of tests developed in the
dataset.

Granularity
Name Abs. Rel.
Unit 3,872 73%
Integration 1,273 24%
System 147 3%

Type
Name Abs. Rel.
Functional 4,619 87%
Performance 190 4%
Energy 145 3%
Portability 133 3%
Security 104 2%
Usability 101 1%

As a second part of our analysis aimed at addressing RQ1, we
classified tests according to their granularity and type. Table 2
summarizes our results. In the first place, we can notice that most
of the test suites analyzed are at unit-level: 73% of the tests in our
dataset are indeed at this granularity. Interestingly, we discovered
that 3,605 of them are directly related to a single production class,
while the remaining 268 unit tests exercise more classes at the
time. For instance, tests named IntentTest or SwipeTest indicate
generic tests that exercise common functionalities of certain classes
without focusing on some of them specifically.

Furthermore, we found that 24% of the test suites pertain to
integration testing and aim at exercising how components behave
when working together. Finally, a small portion of the considered
tests (3%) consists of system tests that aim at testing the application
as a whole. Perhaps more interestingly, our investigation into the
types of test classes written by developers revealed the existence
of a taxonomy composed of six types. As expected, most of the test
suites refer to functional tests (87%), namely tests that exercise the
input/output of production code classes: this confirms the findings
of previous researchers who found that functional testing is the
most widely spread type of testing [7, 12]. Subsequently, our cat-
egorization shows that performance tests represent the 4% of the
available tests: while this number is way lower than the functional
tests, this seems to indicate that (1) developers care, even if in a
lower extent, of performance of mobile apps, thus confirming pre-
vious findings in the field [17, 38] and (2) performance testing is
a more delicate problem than for traditional applications [44, 62],
suggesting the need of more research to understand better why this
happens and what are the consequences.

Furthermore, we found the energy testing is the third more
popular type of exercisingmobile apps. Also in this case, the number
of tests is substantially lower than the one of functional tests; these
results are in line with previous findings that highlighted that more
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automated support to this type of testing would allow developers to
better exercise the energy aspects of mobile apps [59, 67]. A small
percentage of test suites in our dataset relates to portability testing,
namely the types of tests that verify whether the functionalities of
an application is compatible with previous versions of the Android
operating system [92]: the small amount of tests in this category
suggests that more research would be needed in order to understand
the reason behind these achievements [54]. Finally, security and
usability testing represent the least prominent types of tests in
the exploited dataset. On the one hand, the very small amount of
tests in these categories clearly highlight that developers are not
properly aware of how to cover these aspects [23, 27, 76]: this is
particularly worrying in the case of security, also considering the
recent data provided by NowSecure3, which showed that (i) 35%
of communications sent by mobile devises are un-encrypted, (ii)
25% of apps have high-risk security flaws, e.g., expose private or
sensitive data about a user or their activity, and (iii) 82% of Android
devices use an outdated version of the operating system. On the
other hand, our findings support and motivate the research done
on usability and GUI testing [30, 49], which has been an active field
over the last years.

Finally, we focused on the production classes that are actually ex-
ercised. Table 3 reports the results achieved: specifically, we split the
classes based on their role in the system and, according to this clas-
sification, we identified three main categories, namely, GUI, Storage,
and Other : the first refers to production classes implementing the
logic behind the graphical user interface of mobile apps, the second
to the classes that manage the storage of the apps, while the latter
to the classes having the single responsibility of implementing busi-
ness logic of the apps. For the sake of comprehensibility, we split
the GUI category in the three main class types, namely Activity,
Intent, and Fragment. These are the class types that Android
developers use to develop the user interface of their applications.

Looking at the table, we can observe that most of the tests in
the dataset refer to tests exercising the application logic of mobile
apps. Behind this result, there might be different explanations: First,
developers are not properly supported nor aware of currently avail-
able techniques when it comes to the testing of other aspects of their
apps [16]. Second, it seems that they prefer to focus more on the
testing of the main functionalities of their apps rather than storage
or GUI-related classes. Finally, mobile developers are sometimes
junior or with less experience than programmers working in other
domains and, as shown by previous researchers, they might be less
aware of the importance of testing, hence limiting themselves to
exercise a limited amount of classes [76].

Finding 1. Mobile applications are poorly tested and, in-
deed, only 59% of the apps contain at least one test suite. As
for the apps tested, most of the tests pertain to unit tests that
exercise the functionalities of the app, while other aspects
like, for instance, performance of GUI testing, are not widely
considered.

3A well-known security company targeting mobile apps: https://tinyurl.com/rdhrszc

4 RQ2 - ON THE DESIGN OF TEST CASES IN
MOBILE APPS

In this section we report methodology and results of our analysis
aimed at addressing RQ2.

4.1 Research Methodology
Given our original dataset, we had to exclude all the apps with-
out tests from this second research question. This process led us
to focus on 1,050 mobile apps. To assess the design of the con-
sidered test cases we covered two aspects that can characterize
their maintainability and understandability. Table 4 summarizes
the metrics adopted to address RQ2. Firstly, we computed test code
quality metrics, relying on the metric suite originally defined by
Chidamber and Kemerer [13] and other metrics related to code qual-
ity. We computed the Lines of Code (LOC): according to previous
achievements [40, 74, 95], having higher size may cause issues for
developers with respect to the maintainability of tests as well as to
their fault-proneness [81, 87]. For similar reasons, we computed co-
hesion metrics such as Lack of Cohesion of Test Methods (LCOM5
[34]), Tight Class Cohesion (TCC), and Loose Class Cohesion (LCC)
[15]; we measured different metrics as they can provide orthogonal
information that may be useful to analyze the cohesion of tests
better [86]. Furthermore, we considered the coupling between tests,
which is one of the most critical problems when comprehending
test code [94]. To this aim, we computed the Information Flow Cou-
pling (IFC), a metric that captures the relations between tests in
terms of information exchanged [86] and is among the best suited
for assessing the quality of tests [22]. Finally, we considered the
complexity of test code. In this case, the rationale comes from previ-
ous studies [18, 63, 97] which showed that complexity metrics may
be related to the defectiveness of test code as well as may lower the
overall understandability of the target of tests [94]. We quantified
complexity by computing Weighted Methods per Class (WMC) and
Response for a Class (RFC): the former represents the sum of the
complexity of the test cases included in a suite, while the latter
estimates complexity by considering the number of methods that
can potentially be executed in response to a message received by an
object of a class. All the metrics were computed at test suite-level,
as they can be only extracted at this granularity.

To complement the analysis of test code quality metric pro-
files, we considered test smells, i.e., poor design or implementation
choices applied by programmers during the development of test
cases [88]. On the one hand, test smells make test code more change-
and fault-prone [81] as well as harder to comprehend and maintain
[5]. On the other hand, test smells have been shown to be one of the
primary causes behind test instabilities [71, 72], thus making them
extremely harmful for developers [20]. We focused on five forms of
test smells widely investigated by the research community, namely
Mystery Guest, Resource Optimism, Eager Test, Assertion Roulette,
and Indirect Testing. Their definition are provided in Table 4. To
detect them, we employed the code metrics-based tool developed
by Bavota et al. [5], which has shown to have high accuracy, close
to 86% of F-Measure [5, 71, 73] and has been validated several times
in previous work [24, 66, 69, 81], thus making us confident of its
suitability for our study.

https://tinyurl.com/rdhrszc
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Table 3: Types of production classes tested.

Activity Intent Fragments Storage Other
Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.
190 5% 9 1% 51 1% 108 3% 2,896 89%

Table 4: List of factors considered in order to measure the
design quality of test cases.

Group Name Description

Code Metrics
LOC Number of lines of code of the Test Class
WMC Weighted Method Count of the Test

Class
RFC Response for a Class
IFC Information Flow Coupling
LCOM5 Lack of Cohesion of Test Methods
TCC Tight Class Cohesion
LCC Loose Class Cohesion

Test smells Assertion Roulette A test containing several assertions
with no explanation

Eager Test A test method testing more methods of
the production target

Indirect Testing A test interacting with the target via
another object

Resource Optimism A test that make optimistic assumptions
on the existence of external resources

Mystery Guest A test that use external resources (e.g.,
files or databases)

Table 5: Descriptive statistics for all metrics considered in
RQ2. Outliers have been removed from distributions.

Metric Min. 1st Qu. Median Mean 3rd Qu. Max.
LOC 2.00 14.00 32.00 46.40 66.00 181.00
WMC 0.00 2.00 4.00 4.80 7.00 17.00
RFC 0.00 6.00 17.00 26.30 39.00 112.00
IFC 0.00 0.19 0.36 0.37 0.53 1.00

LCOM 0.00 0.27 0.50 0.50 0.75 1.00
TCC 0.00 0.00 0.00 0.26 0.50 1.00
LCC 0.00 0.00 0.50 0.50 1.00 1.00

4.2 Analysis of the Results
Table 5 reports the distributions for all the quality metrics consid-
ered in our second research question.

Looking at the achieved results, we first noticed that the LOC
metric, which computes the size of test suites, has a median value of
32.00, meaning that the vast majority of the considered tests have
a limited size. There are, however, several outliers: we manually
analyzed them to better understand how are they composed. From
this analysis, we found that all the outliers refer to apps having only
one big test class containing several test methods that exercise pro-
duction code belonging to different classes. As an example, the test
MainActivityTest, belonging to the package opencamera.test
of the OpenCamera app, has 12,637 lines of code and implements
1,188 test methods.

When considering complexity metrics like WMC and RFC, our
findings suggest that the complexity of tests is generally low (me-
dian of 4.00 and 17.00 for WMC and RFC, respectively). The discus-
sion for coupling is more interesting: indeed, the IFC metric has a
median of 0.36: this indicates that there exist a non-negligible num-
ber of test suites containing methods that depend on other methods
of the same class. Besides making such tests less comprehensible
[94], this phenomenon may potentially lead to undesired issues
like, for instance, potential flakiness due to a test ordering problem,
which appears when the correct execution of a test depends on the
execution of another one [47].

Finally, we found that the considered metrics do not suggest par-
ticular insights when considering cohesion aspects of tests. Indeed,
for all the cohesion metrics, the values are spread over 0 and 1, with
a greater frequency in the extremities. This could indicate that the
cohesion of tests does not clearly differ between mobile apps and
traditional software projects. More likely, cohesion could be related
to other aspects that are not part of this study (e.g., developers’
expertise).

Turning the attention to test smells, Table 6 reports the distribu-
tion of design issues over the considered set of mobile apps. In the
first place, we can confirm previous findings in the field [4, 5, 31]
and claim that test smells have a high diffuseness also when con-
sidering the mobile context. Most of instances found (50%) refer
to Assertion Roulette, namely the smell that arises when there are
multiple assert statements without explanation—this smell lowers
understandability and maintainability of test suites [88]. Instances
of Eager Test are also quite diffused and affect 31% of the test suites
in our dataset. According to previous results [81], this smell type is
associated with a lower effectiveness of the affected test in terms of
fault detection capabilities. As for the other test smells, we found
them to be less diffused:Mystery Guest appears in 9% of the consid-
ered tests, while Resource Optimism and Indirect Testing in 3% and
7% of the cases, respectively. These percentages are in line with
those found in traditional systems by Bavota et al. [4] and Grano et
al. [31], thus indicating that test smells have similar diffusion and
relevance in both contexts.

More in general, from our empirical analyses we observed that,
while the metric profile of tests would not show potential problems
affecting their design, the quality of tests is still threatened by the
presence of test smells [81]. Despite the fact that they capture two
different concepts, this contradiction may potentially indicate that
currently available metrics are not enough to measure the actual
quality of test suites and, as such, new, different test code metrics
that better capture the design quality and understandability of test
suites should be defined.
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Table 6: Absolute and relative number of test smells detected.

Assertion Roulette Eager Test Mystery Guest Resource Optimism Indirect Testing
Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.
2,508 50% 1,556 31% 439 9% 123 3% 371 7%

Finding 2. The metric profile of the considered test suites
does not always indicate the presence of possible understand-
ability and maintainability issues in test code. However, tests
are often affected by test smells that may possibly negatively
influence their effectiveness, for instance by leading them to
miss faults in production code. Our findings suggest the need
for new test code metrics that can better measure the actual
quality of test suites.

5 RQ3 - ON THE EFFECTIVENESS OF TEST
CASES IN MOBILE APPS

This section details the methodological steps conducted to address
our last research question and the results achieved.

5.1 Research Methodology
Test code effectiveness can be estimated in different ways. In the
context of our study, we focused on two complementary aspects
that have been shown to influence the ability of tests to catch
defects in production code, namely statement coverage [93] and
assertion density [43]. The former measures the amount of lines of
production code touched by a test suite during its execution: we
employed JaCoCo,4 a popular code coverage tool, to compute the
value for each of the considered test suites. As for the assertion
density, this is defined as follow:

assertion.density(tc) =
#assertions(tc)

LOC(tc)
(1)

where tc is the test case under consideration, #assertions(tc) is the
number of assert statements in tc and LOC(tc) is the number of lines
of code of the test. Note that we employed the definition of assertion
density introduced by Kudrjavets et al. [43]. We considered this
metrics as the number of assert statements per test class KLOC
has been associated in the past with a reduction of defect density in
production code [11, 43], hence providing an indication of how good
a test suite can actually be. To compute this metric, we developed
our own tool, which we made available in our online appendix [8].

5.2 Analysis of the Results
Figure 1 reports the distribution of line coverage and assertion
density among all the applications of the dataset. As the figure
shows, the values of both the metrics are between 0 and 0.5, ex-
cepting for some outliers. The median for line coverage is equal
to 0.23, while the one of assertion density is 0.17. These values
relate to low effectiveness [50] and, as a consequence, they can
indicate that test suites developed in the context of mobile apps

4https://www.jacoco.org
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Figure 1: Distribution of test code quality metrics in our
dataset.

have low capabilities of finding faults in production code. Our re-
sults complement previous findings in the field that showed how
mobile apps tend to be more fault-prone than traditional applica-
tions and that most of the faults are introduced during the first
stages of the development [83, 84]: likely, the limited amount of
tests developed, along with their low effectiveness, represent two
key reasons behind such a higher fault-proneness. Further empiri-
cal investigations into the relation between presence/effectiveness
of tests and fault-proneness of production code would be worthy to
better understand the impact of testing on source code quality and
reliability—such an analysis is part of our future research agenda.

Nevertheless, we also observe a notable number of outliers, es-
pecially when considering the assertion density. One of them is
represented by the test suite tb.ProbeResultTest contained in the
DroidFish app: this test has 216 lines of code with 170 assertions
(density=0.79). In the past history of the app, the corresponding
production class, i.e., ProbeResult, was frequently modified (i.e.,
298 commits, out of the total 875) without being affected by any
fault. Of course, this result may be also due to other reasons, for
instance the experience of the development team or the absence
of design issues in the source code; however, the high assertion
density of the test may have likely provided an effective guard
against the introduction of defects.

On the contrary, the test suite named jSscAdapterTest, belong-
ing to the package tt.astronomy of the Jtt app, has an assertion
density close to zero (i.e., 0.01) since it has just 1 assertion over
77 lines of code. Looking at the change history of the project, we
observed that the corresponding production class, SscAdapter, has
been the subject of 6 faults. All in all, our qualitative additional
analyses somehow suggests that keeping test code effectiveness
under control may substantially improve the quality of mobile ap-
plications and in cases where developers are keen to develop test
cases, they have benefits in terms of fault-proneness of classes—
confirming previous findings in the field [43, 57].
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When it turns to code coverage, the discussion is similar. The vast
majority of the test suites have low coverage and cannot properly
exercise the corresponding production code. In this case, however,
we noticed something different: in some cases, developers discuss
about code coverage on the issue trackers and, particularly, on the
way they can increase it. For instance, let consider the case of the
AnySoftKeyboard app: the developers in this case adopt a pull-
based development process where all changes must pass through
a pull request before being merged. In most of the cases where
new code is committed, developers explicitly ask to the author of
the change to verify that the code coverage of unit tests is high
enough. As an example, in the issue #551, one developer applied
multiple changes to the test code in order to increase its coverage
up to 87%. We found similar cases when considering other appli-
cations, thus leading us to claim that the developer’s perception
of code coverage is sometimes pretty high and reflected into the
way test cases are developed—this result partially contradicts what
reported by Linares-Vásquez et al. [45] through their study on the
developer’s perception of code coverage and indicates that further
experiments would be desirable to understand the real value of
code coverage for developers. Nevertheless, our findings suggest
how mobile programmers still experience troubles when it comes
to the development of effective tests.

Finding 3. Test suites are mostly not effective: the median
code coverage and assertion density are 0.23 and 0.17, respec-
tively. Our additional analyses revealed that, in cases where
developers take care of their tests, they seem to be rewarded
with a reduction of production code fault-proneness. Further-
more, we found that in some cases developers perceive code
coverage as highly relevant to accept pull requests.

6 DISCUSSION, IMPLICATIONS, AND
LIMITATIONS

In this section, we present the main insights coming from the results
of the study as well as the limitations that might have affected the
validity of the study.

6.1 Discussion and implications
The results of our empirical study provided a number of insights
and practical implications for the research community that need
further discussion.

Mobile apps are poorly tested. The first, worrisome result of
our study clearly indicated the lack of testing of mobile appli-
cations: not only the median number of tests is 2, but also the
percentage of apps that do not contain any test is dangerously
high (41%). There are multiple factors possibly contributing to
this finding. First, our dataset is composed of open-source mobile
applications that can be developed under different conditions
with respect to other applications: as an example, they can be
developed by inexperienced or novice programmers with little
knowledge on testing practices [91]. At the same time, the need
for testing may be seen as secondary with respect to the develop-
ment of production code, as shown by Beller et al. [6]. This is not

only true in general, but it seems to affect mobile developers as
well. For instance, let consider the case of Acastus Photon,5 an
online address/POI search for navigation apps. Looking deeper
at its issue tracker and the developer’s comments, we noticed
that the developers of the app have consciously postponed some
testing activities with the aim of entering the market faster or
because of the lack of time to dedicate to testing. As an example,
in one of the issues still open on the issue tracker (#2), one of the
core developers of the app posted the following comment:

“[...] I’m probably going to merge the build
changes later on too. [...] I don’t have time to
test them right now so just merging master.”

As shown, in this case the developer decided not to test the newly
committed code change because of the need to other modifica-
tions to the production code. Even without an extensive search,
we found similar cases in other apps of our dataset. Finally, our
findings can be also due to the limited automated support that
developers have when testing their apps: currently, there exist
tools to automate GUI testing (Monkey or Sapienz [49]) while
only a few automated and practical mechanisms are available
for the generation of functional and non-functional test cases
(e.g., Evosuite [21]). As such, our findings further support the
research in the field and outline, once again, the need for further
approaches and tools than can automate testing and ease the
developer’s activities.

On integration and system testing. According to our findings,
most of the test suites present in mobile apps pertain to unit
testing, while only a limited amount of them refer to integration
and system testing [2]. On the one hand, this result somehow
confirms the difficulties that developers have when writing these
types of test cases [2, 32, 75]. On the other hand, the lack of
automated tools and/or supportmechanisms likely influences this
aspect: as such, our findings represent a call for novel approaches
able to work at a higher-level with respect to existing ones that
support developers while developing unit tests [21].

Enabling testing of non-functional attributes. Most of the tests
developed in mobile apps relate to functional aspects of produc-
tion code, while few of them refer to testing of non-functional
attributes like, for instance, energy consumption, security, or
performance. Given the high importance of these aspects in the
today world, we argue that more methods to control for them
should be developed. While the research community has been
working already on them (e.g., [19]), techniques that automate the
detection of non-functional faults should be further investigated.

The test quality of mobile apps is low. Our findings report that
most of the tests analyzed are affected by some form of test
smells. Previous researches have shown how these problems can
turn into critical threats to the effectiveness of tests [72, 81]. To
identify and remove them, some test smell detectors have been
developed in the past [33, 73, 90], however there are still two
key limitations: (1) none of them has been actually tested in the
context of mobile apps, so their accuracy is unknown; (2) accord-
ing to previous findings [90], the existing detectors have limited
detection capabilities. At the same time, techniques to refactor

5https://f-droid.org/en/packages/name.gdr.acastus_photon/
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test code are still unavailable. As such, the practical usage of test
smell detectors and refactoring is precluded.

On the need of novel metrics for test code quality. When an-
alyzing the quality of test suites, we also computed code metrics
capturing cohesion, coupling, and complexity aspects. As an out-
come, we found out a contradiction between the metric profile of
tests and the actual presence of design issues. Indeed, while the
values of the metrics would not indicate problems with the design
of test cases, we discovered that test smells are often present and
lower the maintainability and understandability of tests. This
may potentially indicate that researchers should go beyond cur-
rently available code metrics and define novel indicators that can
better quantify the quality of test cases.

On the effectiveness of test suites. The last discussion point re-
lates to the low effectiveness of the test cases analyzed, under
all perspectives treated, i.e., code coverage and assertion density.
Our results clearly point out that, not only apps are poorly tested,
but the available tests are also not effective and likely to miss
faults in production code. On the one hand, our findings may
be interesting for practitioners and raise their awareness of the
status of mobile app testing. On the other hand, this is a fur-
ther signal of the need for automated solutions that can support
developers when performing testing activities.

6.2 Threats to Validity
Some possible limitations could have biased our findings; this sec-
tion discusses how we mitigated them.

Threats to construct validity. This category refers to the rela-
tionship between theory and observation. A first point of discussion
concerns the dataset of mobile apps exploited in the study. Previ-
ous work has found that some of the applications available in the
F-Droid repository are very basic projects [25, 26], thus possibly
biasing the conclusions of empirical studies. To overcome this lim-
itation, we manually went over each of the initially downloaded
apps in order to discard those that appeared to be too trivial to be
considered. In particular, we looked at their repository in order to
check whether they result active, e.g., in terms of commits, conjec-
turing that trivial apps are not updated and actively developed, e.g.,
since could be part of a university project for an exam.

In all our research questions, we relied on some automatic tools
for various reasons. In RQ1 we employed the test-to-code traceabil-
ity approach defined by Van Rompaey and Demeyer [89] to find
the production classes exercised by the considered tests, as well as
we used a keyword-based tool to classify production classes accord-
ing to their role in the system. While the test-to-code traceability
approach has been validated several times in the past showing a
very high accuracy, we manually double-checked the classifications
done by our own keyword-based tool in order to fix them whenever
needed. In RQ2, we employed an automatic test smell detector: its
accuracy has been previously assessed [5, 71, 73] showing to be
close to 86% in terms of F-Measure. Such an accuracy makes us
confident of the reliability of the instrument and its suitability for
the purpose of the study. Finally, in RQ3 we exploited JaCoCO
and our own tool to compute code coverage and assertion density,
respectively. The former has been widely used in the past by the
research community and, therefore, can be considered as de-facto

standard. The latter is a simple tool computing the ratio between
assertions and test class KLOC, that we tested before exploiting it
in our study, other than made available in our appendix [8].

Threats to conclusion validity. Limitations of this type con-
cern the relationship between experimentation and outcome. In
principle, our study should be considered as an evidence-based
experiment in which our observations and findings come from the
analysis of the actual evidences left by mobile developers with re-
spect to their testing activities. The large-scale nature of the study
allows us to provide the research community with results and find-
ings having a large ecological validity; given our goals and settings,
the usage of statistics or of a mixed-method research approach
would not have provided additional benefits. The metrics used to
address our RQs are all well-established in the research commu-
nity and allowed us to overview the status of mobile testing in a
comprehensive manner. However, it is worth discussing that, in
RQ3, we estimated test code effectiveness by looking at statement
coverage and assertion density, without considering another well-
known indicator such as the mutation score [35], i.e., the amount
of artificially created production faults that a test can detect. We
are aware that this metric could have provided an additional view
of the effectiveness of tests, but unfortunately all the available mu-
tation tools (e.g., Pit6) do not scale up to the size of our empirical
study and, therefore, the computation of mutation coverage would
have been prohibitively expensive. Nevertheless, it is also worth
remarking that Gopinath et al. [28] reported statement coverage to
be the coverage-criterion that is more related to test case effective-
ness and, perhaps more importantly, it has a direct relation with
mutation operators that act at line-level. Given such a relation, we
are confident that the results discussed in the paper would have not
drastically changed if mutation coverage would have been included
in our empirical study.

In the context of RQ1, we performed a manual analysis to clas-
sify granularity and type of tests in our dataset. To this aim, we
followed a grounded-theory approach [77] where two authors first
classified an identical set of tests in order to tune their judgment
and proceeded with the classification process smoothly. Of course,
we still cannot exclude the presence of some imprecision in the clas-
sification, however the high agreement reached by the inspectors
makes us confident of the reliability of the process conducted.

Threats to external validity. As for the generalizability of the
results, our study targeted a large set of open-source applications,
thus allowing the verification of the characteristics of tests on a
large scale. Nevertheless, it is worth pointing out that our findings
may differ in different contexts, e.g., in closed-source apps testing
practice results different, as well as settings, e.g., when considering
test smells other than those taken into account. As such, further
replications of our study would be desirable and are already part of
our future research agenda.

7 RELATEDWORK
The ever increasing complexity of mobile applications, given by
their peculiarities (e.g., ensuring that the application is download-
able, works seamlessly, and gives the same experience across vari-
ous devices and users) as well as by their differences with respect to
6https://pitest.org
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standard applications [91, 96], has pushed the research community
to define methods to support developers with testing activities [60].
Furthermore, researchers have been investigating how developers
test their mobile applications, also in comparison to standard sys-
tems [60], showing dissimilarities, peculiarity and possible effective
practices. Given the goals of our paper, in this section we mainly
focus on the studies that have tried to analyze the testing practices
of mobile developers by (i) surveying and/or interviewing prac-
titioners [39, 45] and (ii) performing mining software repository
studies [16, 39].

Linares-Vásquez et al. [45] surveyed 102 open-source Android
developers on their habits when performing testing, focusing on
(i) their practices and preferences, (ii) automated testing methods
employed, and (iii) perception of code coverage as indicator of test
code quality. As a result, they found that developers rely on usage
models (e.g., use cases, user stories) of their applications when
designing test cases and perceive code coverage not necessarily
important for measuring the quality of test cases. Subsequently, the
same authors [46] investigated current tools and frameworks that
support mobile testing practices, including benefits and trade-offs
between different approaches/tools. A similar work has been done
by Choudhary et al. [14], which benchmarked automated test input
generation tools, discovering that despite the research effort spent
so far,Monkey the random testing tool integrated within Android
Studio is still among the best ones.

Along the same direction, the work of Kochhar et al. [39] sur-
veyed 83 Android developers and 27 Windows app developers at
Microsoft to study techniques, tools, and types of testing used
in the mobile context. At the same time, they also analyzed 600
Android apps in terms of the extent to which they are tested, as-
sessing line and block coverage. The results showed that Android
apps are not properly tested (i.e., 86% do not present any test cases),
and this seems to be in line with the perception of developers, who
are not aware of many existing testing tools.

Erfani et al. [36] interviewed 191 mobile developers asking about
current testing practices. Results showed that there is a lack of
robust monitoring, analysis, and testing tools. The work of Silva et
al. [79] showed similar results. Indeed, they studied 25 open-source
Android apps in terms of test frameworks adopted, highlighting
that mobile apps are not properly tested; a possible reason behind
this result may be related to the lack of effective tools [79]. Finally,
a recent study by Cruz et al. [16] investigated working habits and
challenges when testing mobile apps. In particular, they analyzed
1,000 Android apps, showing that testing technologies (e.g., JUnit)
are absent in the 60% of the cases; however, when a mobile applica-
tion is tested, the authors observed an increment of contributors
and commit, moreover they noticed that mobile apps with tests
have got an high number of minor code issues.

With respect to the papers discussed above, our work can be
seen as complementary. In the first place, our study is more focused
on the analysis of both the presence and quality of tests of mobile
apps rather than the usage of the testing tool and the perception
of developers: thus, we analyze the actual tests written by mobile
developers and not their perception with respect to testing practices.
In the second place, we provided a larger ecological validity to some
previous studies which investigated how much mobile apps are
tested [16, 39]: our dataset was indeed composed of over 1,700

mobile applications, which allowed us to provide more concrete
conclusions than previous studies. Third, our study included a large-
scale analysis of the design quality of test cases and considers both
test smells and code quality metrics, which represent a key novelty
of our work. Finally, when comparing our work with the one by
Kochhar et al. [39], it is important to point out that we analyzed the
effectiveness of tests by not only considering traditional coverage
indicators, but also taking into account assertion density, which
has been shown to impact the ability of tests to find defects in
production classes [11, 43].

8 CONCLUSION
In this paper, we investigated the characteristics of test suites writ-
ten by developers of mobile applications under three perspectives,
namely (1) whether and to what extent these apps are tested and
which kind of tests are developed, (2) what is the design quality
of the test suites, in terms of code metrics and test smells, and (3)
what is the effectiveness of tests, considering assertion density and
code coverage. The main results of the study highlight that 59% of
the considered apps have at least one test suite; developers mostly
test source code to exercise its functionalities, while other types of
testing are less widespread. Test smells represent a key problem for
most of the test suites, since some of them exhibit characteristics
making them possibly flaky. Finally, their effectiveness is low when
considering all the computed metrics. Our findings provide a num-
ber of implications for researchers, in particular on the need for
specific testing tools (e.g., energy or performance approaches) and
on the need for studies bringing evidence to developers with respect
to the usefulness of testing for the success of mobile applications.

To sum up, our paper made the following contributions:

(1) A large-scale empirical study on the prominence, design
quality, and effectiveness of test cases manually written by
developers in the context of mobile applications;

(2) A research roadmap on the topic, which can be exploited by
fellow researchers to delineate the future steps that may be
performed to ease the testing activities of mobile developers;

(3) An online appendix [8] containing data and scripts used to
conduct our study, and which can be used to further under-
stand our findings and build upon our work.

Our future research agenda follow the roadmap defined in Sec-
tion 6.1 and includes the definition of techniques that can automate
some of the testing processes of mobile developers. At the same
time, we aim at studying the aspects treated in this paper on an
even larger scale, by considering applications coming from different
domains and contexts (e.g., closed-source apps).
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