
Adaptive Selection of Classifiers for Bug Prediction: A Large-Scale Empirical
Analysis of Its Performances and a Benchmark Study

Fabiano Pecorelli

SeSa Lab, University of Salerno, Italy — fpecorelli@unisa.it

Dario Di Nucci

Jheronimus Academy of Data Science, Tilburg University, The Netherlands — d.dinucci@uvt.nl

Abstract

Bug prediction aims at locating defective source code components relying on machine learning models. Although some
previous work showed that selecting the machine-learning classifier is crucial, the results are contrasting. Therefore,
several ensemble techniques, i.e., approaches able to mix the output of different classifiers, have been proposed. In this
paper, we present a benchmark study in which we compare the performance of seven ensemble techniques on 21 open-
source software projects. Our aim is twofold. On the one hand, we aim at bridging the limitations of previous empirical
studies that compared the accuracy of ensemble approaches in bug prediction. On the other hand, our goal is to verify
how ensemble techniques perform in different settings such as cross- and local-project defect prediction. Our empirical
experimentation results show that ensemble techniques are not a silver bullet for bug prediction. In within-project bug
prediction, using ensemble techniques improves the prediction performance with respect to the best stand-alone classifier.
We confirm that the models based on Validation and Voting achieve slightly better results. However, they are similar
to those obtained by other ensemble techniques. Identifying buggy classes using external sources of information is still
an open problem. In this setting, the use of ensemble techniques does not provide evident benefits with respect to
stand-alone classifiers. The statistical analysis highlights that local and global models are mostly equivalent in terms of
performance. Only one ensemble technique (i.e., ASCI) slightly exploits local learning to improve performance.

Keywords: Bug Prediction, Within-project, Cross-project, Ensemble Classifiers.

1. Introduction

Bug prediction is the software engineering field that
aims at locating potentially defective source code compo-
nents in a software system [33] with the aim of prioritizing
code review or testing activities [72, 73]. Researchers have
been proposing various implementations of bug prediction,
including the use of unsupervised approaches based on (i)
topic modeling [66], (ii) self-organizing maps [20], and (iii)
connectivity metrics [98]. Yet, the most widely adopted
solution is represented by the adoption of supervised learn-
ing, which consists of the definition of machine learning-
based models in which a set of features (also called pre-
dictors) are exploited to predict the defect-proneness of
source code classes [33]. These models can be trained us-
ing three different strategies: (1) using a sufficient amount
of labeled data coming from previous versions of the same
system where the model should be applied to, i.e., within-
project training [90], (2) using labeled data from similar
projects, i.e., cross-project training [100], or (3) clustering
homogeneous data from different projects to reduce vari-
ability and then building a model for each cluster, i.e.,
local cross-project training [58].

The performance of bug prediction models can be influ-
enced by a number of factors, e.g., training strategy [90],
data balancing [84], or feature selection [95]. However,
one of the aspects more often correlated to the ability of
machine learning models to predict bugs is represented
by the selection of the classifier exploited to discriminate
buggy and non-buggy classes (e.g., Random Forest). For
instance, Ghotra et al. [28] showed that a sub-optimal se-
lection can decrease the performance of bug prediction
models up to 30%. Furthermore, a previous study [71]
found that different classifiers have similar performance,
yet being able to correctly predict the defect-proneness of
different classes. These findings motivated the definition of
alternative approaches able to exploit the complementar-
ity of classifiers: these are known as ensemble techniques.

An example is given by the Validation and Voting
strategy proposed by Tosun et al [89]: this is a two-stage
approach that consists of (1) building a number of bug
prediction models relying on different classifiers and (2)
predicting the defectiveness of classes based on what the
majority of the models built suggest. Alternative tech-
niques exploit meta-algorithms that aim at reducing the
variance of the training data to avoid model overfitting [47]

Preprint submitted to Elsevier February 17, 2021

or introduce a meta-learner that can combine the outcome
of individual classifiers [71].

In our recent research [24], we also contributed to the
definition of ensemble techniques for bug prediction. In
particular, we proposed ASCI (which is the acronym of
Adaptive Selection of Classifiers in bug predIction) [24], a
novel approach that is able to dynamically select, through
a classification model, the machine learner to be used to
predict the defect-proneness of a class based on its charac-
teristics. The performance of the approach has been origi-
nally assessed in a within-project scenario, where we found
that its usage provides better results than five individual
classifiers and the Validation and Voting technique.
Later on, we also preliminarily investigated the capabili-
ties of ASCI when applied to cross-project bug prediction
[22]: also, in this case, our technique performed better
than Validation and Voting on ten software projects.

In this paper, our goal is to make a further step ahead
toward understanding the value of dynamic selection of
classifiers for bug prediction. We propose a large-scale
empirical investigation whose aim is twofold. On the one
hand, we corroborate the previous findings obtained by
using ASCI in the context of within- and cross-project bug
prediction, in an effort of verifying the generalizability of
our technique when considering larger and more diverse
datasets. On the other hand, we benchmark the per-
formance of ASCI with a large variety of six alternative
ensemble techniques. Such an analysis allows us to chal-
lenge the findings provided by Liu et al. [53] and Zhang
et al. [99], who previously studied the performance of en-
semble techniques for bug prediction. In particular, Liu
et al. [53] showed that the usage of the Validation and
Voting technique allows bug prediction models to work
better, while Zhang et al. [99] benchmarked seven ensem-
ble techniques, belonging to four categories, confirming the
findings on the superiority of the Validation and Vot-
ing technique. While the findings by Liu et al. [53] and
Zhang et al. [99] represent an important source of infor-
mation for researchers and practitioners interested in the
application of ensemble techniques in practice, in the con-
text of our research we figured out six critical limitations
that might have possibly threatened the conclusions pro-
vided so far. More specifically:

Data quality. Both Liu et al. [53] and Zhang et al. [99]
exploited projects coming from the Seacraft repository
[59]. Unfortunately, the findings by Shepperd et al. [81]
reported that these datasets might contain noisy and/or
erroneous entries that may possibly bias the interpretation
of the results; as such, a correction procedure should be
applied before training prediction models.

Data preprocessing. As widely demonstrated in the liter-
ature [29, 32, 45, 82], data preprocessing techniques such
as (i) data normalization, (ii) feature selection, and (iii)
training data balancing should always be applied before

running bug prediction models to limit conclusion insta-
bility. However, Liu et al. [53] and Zhang et al. [99] did
not perform a complete data preprocessing before build-
ing the experimented bug prediction models: as a conse-
quence, their findings might have under-/over-estimated
the capabilities of ensemble techniques.

Data Analysis. To evaluate the performance of bug pre-
diction models, previous work heavily relied on metrics
such as precision, recall, and F-Measure [2]. Nevertheless,
these are threshold-dependent metrics that should be com-
plemented with additional measures (e.g., AUC-ROC) to
have a clearer interpretation of the actual effectiveness of
bug prediction models [32].

Limited size of previous analysis. The study by Liu et al.
[53] has been conducted on seven systems and considering
the behavior of two ensemble techniques, i.e., Bagging
and Validation and Voting, while Zhang et al. [99]
took into account a dataset composed of ten systems an-
alyzing seven ensemble approaches classified in four cate-
gories, i.e., Random Forest, Bagging, Boosting, and
Validation and Voting. As a consequence, a wider
analysis that includes the recent ensemble techniques pro-
posed in the literature may be beneficial.

Unclear relationship between local learning and ensemble
classifiers. While the potential usefulness of local learn-
ing on the performance of bug prediction models has been
shown [58], to the best of our knowledge there has been
no attempt to investigate the extent to which such local
learning strategy can benefit the usage of ensemble tech-
niques.

Missing comparison with within-project prediction models.
One of the key promises of cross-project bug prediction
models is to be competitive with respect to within-project
ones. As recommended in previous work [36, 92], when-
ever a certain technique is experimented in a cross-project
setting, it should be applied in a within-project setting as
well in order to fairly benchmarking its real capabilities.
The studies by Liu et al. [53] and Zhang et al. [99] did not
test how ensemble approaches applied in cross-project bug
prediction work when compared with their adoption in a
within-project scenario.

Our benchmark experiment copes with the aforemen-
tioned issues. Specifically, we consider 21 datasets coming
from Seacraft [59] and apply a number of corrections
suggested by Shepperd et al. [81] in order to make them
cleaned and suitable for our purpose. Then, we take into
account several different ensemble techniques, belonging to
six categories, measuring their performance using the two
metrics recommended by previous work, i.e., AUC-ROC
and Matthew’s Correlation Coefficient [32, 85].

The key results of our study suggest that the problem
of identifying buggy classes using external sources of infor-
mation is still far from being solved. The use of ensemble

techniques does not provide evident benefits with respect
to stand-alone classifiers, but in general, the Validation
and Voting [89] and ASCI [24] techniques should be
preferred among the others. These observations also hold
when applying ensemble methodologies to local bug pre-
diction; moreover, we found that global and local mod-
els are mostly statistically equivalent. Finally, ensemble-
based cross-project models perform worse than within-
project ones in terms of prediction accuracy, yet being
more robust (their performance does not vary as much
as the ones of within-projects models). Furthermore, we
observed that also in a within-project scenario the use of
ensemble classifiers does not guarantee better prediction
performances with respect to models adopting stand-alone
machine learners.

Structure of the paper. Section 2 discusses the previous
achievements attained by the research community. In Sec-
tion 3 we describe the methodology followed to conduct the
empirical study. Section 4 analyzes the obtained results,
while Section 5 discusses them. Section 6 reports possible
threats affecting our findings and how we mitigated them.
Finally, Section 7 concludes the paper and describes our
future research agenda on the topic.

2. Related Work

The empirical study we proposed is mainly concerned
with (i) how to effectively train a bug prediction model,
i.e., how to treat training data effectively, and (ii) the
machine learning technique to exploit to create a cross-
project bug prediction model. The following subsections
cover the literature related to these two aspects.

2.1. Training Cross-Project Bug Prediction Models

Cross-project bug prediction models are based on the
usage of data coming from external (similar) projects to
train a machine learner able to discriminate buggy and
non-buggy instances in the project currently being ana-
lyzed [100]. While most of the research made in this area
investigated which are the most efficient features to use in
cross-project models to correctly capture the bugginess of
software classes [3, 5, 12, 19, 23, 35, 54, 70], a notable effort
has been also devoted to how to make external data suit-
able for the project under analysis [15, 55, 63, 92]. The lat-
ter problem aims at dealing with the fact that cross-project
models suffer data heterogeneity, i.e., external data might
be different with respect to the one available in the project
to analyze, leading to worsening the performance of bug
prediction models. To this aim, the research community
proposed a number of approaches, classified in (i) data
normalization (ii) data filtering, and (iii) data clustering.

Data normalization approaches directly act on the met-
rics transferred from external projects [97]. In particu-
lar, since software metrics are usually not normally dis-
tributed, they need to be transformed before building a

bug prediction model [97]. Watanabe et al. [92] proposed
the use of data standardization based on the mean value
of the corresponding feature in the target project, while
Ma et al. [55] exploited the concept of data gravitation in
order to weight external data on the basis of the similar-
ity with the target project. Nam et al. [63] compared how
the performances of bug prediction models vary when data
are normalized using a min-max scaling or a Z-score ap-
proach, finding the former as the best technique for data
normalization. Herbold et al. [39] performed a wide repli-
cation study, comparing 24 approaches devised for cross-
project bug prediction. They recommended some methods
that should be applied to have better performance such as
the data normalization proposed by Camargo Cruz and
Ochimizu [15]. Moreover, their results indicate that cross-
project bug prediction is not yet ready for being applied
in practice.

Data filtering techniques aim at selecting the training
data that is more similar to the target project. Most of the
approaches in this category rely on the use of clustering
algorithms, and more specifically of the k-Nearest Neighbor
one [37, 38, 90].

Finally, data clustering techniques aim at grouping to-
gether instances of the training set in order to build a sep-
arate bug prediction model for each cluster [58]: for this
reason, they are called local learning methods. Unlike data
filtering techniques, approaches in this set do not have the
goal to filter training data but rather that of building a spe-
cialized bug prediction model for each cluster of the train-
ing data. Menzies et al. [58] found that the application of
local learning can substantially improve the performance
of bug prediction models with respect to global models.
Later on, Bettenburg et al. [9] discovered that the perfor-
mance of local models is strongly impacted by the tuning
of the clustering algorithm exploited: as a consequence,
they conclude that the usage of clustering algorithms able
to automatically identify the ideal number of clusters to
create is desirable. Finally, Scanniello et al. [80] tested how
the performance of local bug prediction vary when group-
ing external classes based on dependency analysis rather
than external features. While the approach proposed by
Scanniello et al. [80] improved the performance of the orig-
inal local bug prediction model proposed by Menzies et al.
[58], the intensive analyses required to extract dependen-
cies make it less scalable. Despite their promising perfor-
mance, Herbold et al. [40] showed that local models are
not significantly different from global models in terms of
overall prediction performance.

The empirical study conducted in this paper can be
seen as complementary to those reported above. Indeed,
our main goal is to investigate whether ensemble tech-
niques actually provide benefits in the contexts of global
and local cross-project bug prediction. Moreover, we took
into account previous findings concerned with the optimal
setup of training data and performed a number of prepro-
cessing steps before building bug prediction models.

2.2. Machine Learning Techniques in Bug Prediction

Selecting the classifier to use represents a relevant prob-
lem for the configuration of bug prediction models [1]. In
the past, most of the bug prediction models devised made
use of Logistic Regression [5, 19, 61, 62, 70], Decision Trees
[4, 60, 88], Radial Basis Function Network [65, 101], Sup-
port Vector Machines [48, 67, 93], Decision Tables [46, 57],
Multi-Layer Perceptron [23], or Bayesian Network [76].

Among such classifiers, none of them is actually able
to outperform the others [11, 10, 26, 69, 56] since their
performance strongly depends on the specific dataset con-
sidered. More importantly, Ghotra et al. [28] highlighted
that the selection of an appropriate classifier might lead
bug prediction models to be more or less effective by up
to 30%, while Panichella et al. [71] demonstrated that the
predictions of different classifiers are highly complemen-
tary despite the similar prediction accuracy.

Thus, the identification of the classifier to use is not a
trivial task and for this reason, a lot of effort has been de-
voted to the definition of so-called ensemble techniques,
i.e., methodologies able to combine different classifiers
with the aim of improving bug prediction performance.
Tosun et al. [89] devised the Validation and Voting
technique, that is a method to combine the output of
different classifiers using an aggregating function. More
specifically, the technique predicts a class as buggy in case
the majority of models (obtained running different classi-
fiers on the same training set) predicts the bugginess of a
class; otherwise, the class is predicted as bug-free.

Other techniques proposed in the literature are based
on the Bagging ensemble technique [78], which combines
the outputs of different models trained on a sample of in-
stances taken with a replacement from the training set.
For instance, Kim et al. [47] combined multiple training
data obtained applying a random sampling. More recently,
some approaches inspired to the Stacking ensemble tech-
nique Rokach [78] have been proposed [71, 75]. They use
a meta-learner to induce which classifiers are reliable and
which are not and consider the predictions of different clas-
sifiers as input for a new classifier.

Specifically, Panichella et al. [71] devised CODEP,
an approach that first applies a set of classifiers inde-
pendently, and then uses the output of the first step as
predictors of a new prediction model based on Logistic
Regression. Zhang et al. [99] conducted a similar study
like the one performed in [71], comparing different ensem-
ble approaches. They found that there exist several en-
semble techniques that improve the performance achieved
by CODEP, and Validation and Voting are often one of
them. Petrić et al. [75] used four families of classifiers in
order to build a Stacking ensemble technique [78] based on
the diversity among classifiers in the cross-project context.
Their empirical study showed that their approach can per-
form better than other ensemble techniques and that the
diversity among classifiers is an essential factor. Further-
more, Wang et al. [91] compared the performance achieved

by seven ensemble techniques, each of them belonging to
a different category, in the context of within-project bug
prediction, showing that often Validation and Voting
stands out among them.

Finally, Di Nucci et al. [24] proposed ASCI, an ap-
proach that dynamically recommends the classifier able to
better predict the bug-proneness of a class based on its
structural characteristics (i.e., product metrics). The em-
pirical study, conducted in the context of within-project
bug prediction, showed that the approach is up to 5%
more effective than Validation and Voting. Later on,
Di Nucci et al. [22] conducted a preliminary study on the
performance of ASCI when applied to cross-project bug
prediction, confirming that this technique can outperform
the Validation and Voting one.

With respect to the papers discussed above, the em-
pirical study proposed herein has the goal of further un-
derstanding the performance of ASCI as well as of en-
semble techniques when applied to bug prediction. More
specifically, we took into account a larger variety of soft-
ware projects than previous work [22, 24, 91, 99], prepro-
cessed data following quality standards [81, 82], and exper-
imented with most of the state-of-the-art ensemble tech-
niques defined so far in order to provide a clearer, updated
view of the capabilities of ensemble techniques. Further-
more, we also analyzed the impact of local learning and its
combination with ensemble methods on the performance
of bug prediction models.

3. Empirical Study Definition and Design

The goal of the empirical study is twofold: in the first
place, we aim at enriching the investigation of the capa-
bilities of ASCI, an ensemble method we proposed in a
previous work [24], by experimenting it with a larger set of
software projects trained in both within- and cross-project
scenarios. Secondly, we aim at benchmarking and compar-
ing the capabilities of ASCI with those of six alternative
approaches, hence providing a clearer overview of the per-
formance of ensemble bug prediction. The purpose of the
study is a better allocation of resources dedicated to test-
ing activities. The perspective is of researchers interested
in understanding how much the selection of an ensemble
technique has an effect on bug prediction capabilities, as
well as of practitioners who want to evaluate the usability
of ensemble-based bug prediction models.

Specifically, our study is driven by the following re-
search questions (RQs):

RQ1 What is the performance of Asci in a within-project
scenario when compared to alternative state-of-the-
art ensemble techniques?

RQ2 What is the performance of Asci in a cross-project
scenario when compared to alternative state-of-the-
art ensemble techniques?

RQ3 What is the performance of Asci in a local cross-
project scenario when compared to alternative state-
of-the-art ensemble techniques?

The first research question (RQ1) has the goal of repli-
cating our previous study [24] by considering a wider set
of both projects and baselines in the context of within-
project bug prediction, while RQ2 aims at providing a
clearer view of how our technique works when applied in a
cross-project scenario, also when compared to alternative
ensemble methods. Finally, RQ3 focuses on the role of
local learning, namely on the combination between local
bug prediction and the use of ensemble methodologies.

3.1. Context of the Study

The context of the study was composed of 21 soft-
ware systems, collected by Jureczko and Madeyski [44]
and available in the Seacraft repository [59], whose de-
tails are shown in Table 1. Specifically, we considered
projects having different scope (e.g., build or workflow
management systems) and different size (e.g., from 3 to
300 KLOC). Table 1 reports details about the specific re-
leases taken into account, the size (in terms of number
of classes and KLOC), and the number and percentage of
buggy classes. To properly select the dataset we consid-
ered two main factors. Firstly, we considered only publicly
available datasets to guarantee a full replication of our ex-
periments. Secondly, we selected software systems from
various application domains and having different charac-
teristics to reduce the threats to the external validity of
our study [28, 82]. Thus, we picked up 21 systems col-
lected by Jureczko and Madeyski [44] and available in the
Seacraft repository [59], after applying the guidelines
proposed by Tantithamthavorn et al. [85] to ensure data
robustness: specifically, we did not consider systems hav-
ing more than 50% of buggy classes.

It is important to highlight that the dependent, as well
as the independent variables used in our study, were al-
ready contained in the dataset. In particular, we exploited
structural metrics, represented by LOC and Chidamber
and Kemerer metrics [18], to predict the bugginess of each
class, represented by a boolean value.

After we selected the dataset, we performed some data
preprocessing steps as reported below:

1. Data Cleaning. To remove possible noise or erro-
neous entries, we applied the data cleaning procedure
proposed by Shepperd et al. [81], which is composed
of 13 steps needed to fix the NASA dataset for soft-
ware defect prediction. However, not all the steps
apply to our datasets where we had only to remove
(i) constant features and (ii) features with missing
values. The cleaning involved 61 instances (i.e., '
1%) of the 5,422 in the initial dataset.

2. Data Normalization. The performance of predic-
tion models can also be affected by the different lev-
els of design-complexity metrics [15, 63]. Based on

the results provided by Nam et al. [63] and Herbold
et al. [40], we applied a linear normalization in the
[0,1] interval, relying on the normalization filter im-
plemented in Weka [30].

3. Feature Selection. Another aspect that can nega-
tively affect the performance of bug prediction mod-
els is the high correlation between independent vari-
ables [68]. To deal with this issue, we relied on the
Correlation-based Feature Selection (CFS) approach
[31], which allows identifying a subset of actually rel-
evant features for a model. It is worth noting that
we applied CFS only after we combined the instances
belonging to different software systems, as recom-
mended by Hall et al. [33].

4. Data Balancing. Usually, bug prediction is an un-
balanced problem, i.e., the number of buggy classes
in a system is much lower than non-buggy ones.
Since this aspect can bias the performance of our
prediction model [6], we applied the Synthetic Mi-
nority Over-sampling TEchnique, i.e., SMOTE [17]
to ensure training sets having a similar proportion
of buggy and non-buggy classes.

It is important to note that the order of the preprocess-
ing steps has been guided by the framework proposed by
Song et al. [82], who suggested an ideal sequence of oper-
ations to perform before training a bug prediction model.
The final preprocessed datasets are available in our online
appendix [74].

3.2. Baseline Selection

The performances achieved by our approach were
firstly compared with those obtained by the model rely-
ing on the Näıve Bayes classifier, which was found to
be the best stand-alone machine learner over our dataset.
More specifically, we ran seven stand-alone classifiers, i.e.,
Multi-Layer Perceptron, Näıve Bayes, Logistic
Regression, Radial Basis Function, C4.5, Decision
Table, and Support Vector Machine on the same set
of systems considered in the study and using the same val-
idation methodology. As a result, we found that the use
of Näıve Bayes led to the best results in terms of MCC.
For this reason, we considered such a classifier as our base-
line. A complete overview of the results achieved by the
stand-alone classifiers is available in our online appendix
[74].

In the second place, we benchmarked Asci with a set
of ensemble techniques that were previously experimented
for bug prediction. Specifically:

• Boosting. The Boosting technique iteratively
uses a set of models built in previous iterations to
manipulate the training set [78]. At the next itera-
tion, the model focuses on those instances more diffi-
cult to predict. Adaptive Boosting (AdaBoost)
[27] is a well-known Boosting technique. During

Table 1: Characteristics of the software systems used in the study

Project Release Classes KLOC Buggy Classes (%)
1 Ant 1.7 745 208 166 22%
2 ArcPlatform 1 234 31 27 12%
3 Camel 1.6 965 113 188 19%
4 E-Learning 1 64 3 5 8%
5 InterCafe 1 27 11 4 15%
6 Ivy 2.0 352 87 40 11%
7 jEdit 4.3 492 202 11 2%
8 KalkulatorDiety 1 27 4 6 22%
9 Nieruchomosci 1 27 4 10 37%
10 pBeans 2 51 15 10 20%
11 pdfTranslator 1 33 6 15 45%
12 Prop 6.0 660 97 66 10%
13 Redaktor 1.0 176 59 27 15%
14 Serapion 1 45 10 9 20%
15 Skarbonka 1 45 15 9 20%
16 Synapse 1.2 256 53 86 34%
17 SystemDataManagement 1 65 15 9 14%
18 TermoProjekt 1 42 8 13 31%
19 Tomcat 6 858 300 77 9%
20 Velocity 1.6 229 57 78 34%
21 Zuzel 1 39 14 13 45%

the training phase, AdaBoost repetitively trains a
weak classifier on subsequent training data. At each
iteration, a weight is assigned to each instance of the
training set, with the purpose of assigning higher
weights to misclassified instances that should have
more chances to be correctly predicted by the new
models. At the end of the training phase, a weight
is assigned to each model in order to reward mod-
els having higher overall accuracy. During the test
phase, the prediction of a new instance is performed
by voting of all models. The results are thus com-
bined using the weights of the models, in the case
of binary classification a threshold of 0.5 is applied.
We used the default configuration provided by the
Weka toolkit [30], implementing NBBoosting, a
model relying on Adaptive Boosting and using
Näıve Bayes (NB) as the weak learner. We used
NB because, in the considered context, this classifier
achieved better performance with respect to other
classifiers.

• Bootstrap Aggregating (Bagging). Bagging
[14] combines the output of various models in a
single prediction. During the training phase, m
datasets with the same size as the original one are
generated by performing sampling with replacement
(Bootstrap) from the training set. Hence for each
dataset, a model is trained using a weak classifier.
During the test phase, for each instance, the com-
posite classifier uses a majority voting rule to com-
bine the output of the models into a single predic-
tion. We used the default configuration provided by
the Weka toolkit [30], implementing NBBagging,
a model that use the same weak learner used for

Boosting (i.e., NB).

• Validation and Voting. Validation and Vot-
ing [49] (also called Voting) is a weighting method.
It combines the confidence scores obtained by the
underlying classifiers. For each instance to predict,
each classifier returns a confidence score ranging be-
tween 0 and 1. The scores are combined by an op-
erator (e.g., Average in case of AvgVoting and
Maximum in case of MaxVoting). A class is
marked as buggy if the combination of the confi-
dence scores is higher than 0.5, while it is predicted
as clean otherwise. We configured Voting as al-
ready done in previous work [71] using Logistic
Regression, Radial Basis Function, C4.5, De-
cision Table, Multi-Layer Perceptron, Näıve
Bayes, and Support Vector Machine.

• Adaptive Selection of ClassIfiers [24]. This al-
gorithm has been developed specifically for bug pre-
diction purposes. The basic idea is to dynamically
choose the classifier for each test set instance relying
on its structural characteristics. During the training
phase, ASCI trains each of the base classifiers and
collects the evaluations on the training set. Lately, a
decision tree is built: the internal nodes represent the
structural characteristics of the classes contained in
the training set, while the leaves represent the clas-
sifiers able to correctly classify the bug-proneness
of instances having such structural characteristics.
During the test phase, ASCI firstly predicts for each
instance the most suitable model and then uses it to
predict the bugginess of this instance. In this study,
we configured the model by using the same set of

classifiers used for the Validation and Voting en-
semble methods.

• CODEP. CODEP [71] is a technique based on
Stacking [94] that uses a meta-classifier (e.g., Lo-
gistic Regression) to infer the bugginess of classes
[78]. During the training phase, CODEP trains
each of the base classifiers and creates a new dataset
by collecting the confidence scores assigned by the
classifiers on each training instance. Finally, with
the aim of combining the outputs of the base classi-
fiers, a meta-classifier is built on such a new dataset.
In our study, we configured the model by adding
Support Vector Machine, a popular machine
learner, to the set of base classifiers previously used
by Panichella et al. [71] and used also for the Vali-
dation and Voting ensemble methods. As done
in [71], we used Logistic Regression as meta-
classifier.

• Random Forest. Random Forest [42] is an en-
semble of pruned decision trees. As showed for Bag-
ging, each decision tree is built by using Boot-
strap. The combination of the prediction of the
decision trees is performed by using majority voting.
In our experiments, we used the default configura-
tion provided by the Weka toolkit [30].

We are aware of the possible impact of classifiers’ con-
figuration on the ability of finding bugs [87], however, the
identification of the ideal settings in the parameter space
of a single classification technique would have been pro-
hibitively expensive [7]. For this reason, we applied the
classifiers using their default configuration.

3.3. Validation Strategies and Evaluation Metrics

A key decision in this context was the selection of an
appropriate validation strategy [86].

In the context of within-project bug prediction (RQ1),
we adopted the 10-Fold Cross Validation [83]. This
methodology randomly partitions the data into 10 folds of
equal size, applying a stratified sampling (e.g., each fold
has the same proportion of bugs). A single fold is used as
test set, while the remaining ones are used as training set.
The process was repeated 10 times, using each time a dif-
ferent fold as test set. Then, the model performance was
reported using the mean achieved over the ten runs. It is
important to note that we repeated the 10-fold validation
100 times (each time with a different seed) to cope with the
randomness arising from using different data splits [32].

In the contexts of cross-project bug prediction (RQ2),
we could not adopt the 10-Fold Cross Validation as valida-
tion strategy, as we could not use as test set data coming
from the same system as the training set. Thus, we opted
for the Leave-One-Out Cross-Validation [79]. In this strat-
egy, the model is trained using the data of all the systems
but one, which is retained as test set. The cross-validation

has been then repeated 21 times, allowing each of the 21
systems to be the test set exactly once [79]. We used this
validation strategy since it is among the least biased and
most stable validation approaches, according to the find-
ings reported by Tantithamthavorn et al. [86]. Further-
more, it is important to note that this strategy (i) allows
all systems to be used for both training and test purpose,
and (ii) has been widely used in the context of bug predic-
tion [16, 71, 90, 99].

In the context of RQ3, we had to build local bug pre-
diction models. To this aim, we exploited the Expecta-
tion Maximization (EM) clustering algorithm proposed
by Dempster et al. [21]. The choice of this algorithm was
driven by multiple factors. Firstly, it can automatically de-
termine the number of clusters through an internal cross-
validation process. Secondly, it is similar to the MCLUST
algorithm used by Bettenburg et al. [8] and Menzies et al.
[58]. Lastly, previous work [40] showed that the perfor-
mance achieved by EM are close to those obtained by the
algorithm originally proposed by Menzies et al. [58]. In
the context of this study, we relied on the implementation
of the algorithm available in the Weka toolkit [30]. Given
a project Pi, the input of the clustering algorithm was rep-
resented by the data coming from all the systems but Pi,
i.e., we still worked in a cross-project setting by means
of the Leave-One-Out Cross-Validation [79] where the test
sets were represented by the data of Pi. We created a bug
prediction model relying on ASCI for each of the clusters.

As evaluation metrics, we avoid the computation of
the widely used accuracy and F-Measure, as they are
threshold-dependent metrics that can bias the interpre-
tation of bug prediction capabilities [32]. Conversely, to
properly evaluate the ability of our approach to predict
the bug-proneness of classes we relied on Matthew’s Cor-
relation Coefficient (MCC), which is a measure indicating
the extent to which the independent and dependent vari-
ables are well related to each other. Metric values close
to 1 indicate higher performance. As shown by Hall et al.
[32], this is the most reliable threshold-independent metric
for the evaluation of bug prediction models.

As a final step of our analyses, we also statistically ver-
ified the validity of our findings. To this aim, we exploited
the Nemenyi test [64] for statistical significance and re-
port its results by mean of MCB (Multiple comparisons
with the best) plots [50]. As a significance level, we used
0.05. The elements plotted above the gray band in the
figures are statistically larger than the others.

4. Analysis of the Results

In this section, we present the results of our study, by
discussing each research question independently.

4.1. RQ1 - Evaluation of Ensemble Techniques when
Adopted for Within-Project Bug Prediction

Figure 1 depicts the box plots of the MCC achieved on
the 21 software systems in our dataset by ASCI and the

0.0

0.5

1.0

NB

NBBoo
sti

ng

NBBag
gin

g

Avg
Vo

tin
g

M
ax

Vo
tin

g

CODEP

Ran
do

m
Fo

re
st

ASCI

M
C

C

Figure 1: Boxplots of MCC achieved by the ensemble methods under
study and NB in the within-project bug prediction context.

baselines experimented in within-project bug prediction
models (white asterisks highlight the means).

As shown, ASCI performance is comparable with the
other ensemble techniques: it has a median MCC slightly
higher than all the baseline approaches but AvgVoting.
However, it does not provide major improvements in the
identification of buggy classes. Thus, our study confirms
previous findings on the capabilities of ASCI [24].

As expected the performance of the model trained us-
ing Näıve Bayes (NB) are worse than most of the en-
semble techniques. However, we can observe that most of
the ensemble techniques perform in a similar manner. Fur-
thermore, on the one hand, we can conclude that the use of
ensemble techniques improves the performance of machine-
learning models for defect prediction. On the other hand,
most of the ensemble techniques are not better than the
others from a statistically significant perspective. Indeed,
looking at the other models, we found that AvgVoting
on average obtains the best results (e.g., +7% with respect
to NB) but the improvement is quite limited or negligible
with respect to what previous work [24, 91] depicted. It
is worth noticing that AvgVoting performs better than
MaxVoting, the same ensemble technique using the max-
imum operator.

More in general, we noticed that within-project mod-
els suffer from high-performance variability across differ-
ent runs, meaning that variations in the training set lead
to very different results. Thus, practitioners interested in
setting up within-project models need to be careful when
selecting the training set of machine learning techniques.

Figure 2 shows the likelihood of each analyzed en-
semble technique along with Näıve Bayes to appear in
the top Nemenyi rank. Interestingly, the statistical test
showed that the differences observed among AvgVoting,
RandomForest, and ASCI are negligible, meaning that
they are statistically equivalent in terms of prediction ca-
pabilities. From a practitioner’s perspective, this result
suggests the selection of one of these three techniques while

Li
ke

lih
oo

d

N
B

B
oo

st
in

g
−

 3
.8

9

N
B

 −
 3

.9
5

M
ax

V
ot

in
g

−
 3

.9
5

N
B

B
ag

gi
ng

 −
 4

.2
0

C
O

D
E

P
 −

 4
.3

7

A
S

C
I −

 4
.9

9

R
an

do
m

F
or

es
t −

 5
.2

3

A
vg

V
ot

in
g

−
 5

.4
3

4.
0

4.
5

5.
0

5.
5

Figure 2: The likelihood of each technique in within prediction ap-
pearing in the top Nemenyi rank in terms of MCC. Circle dots are the
median likelihood, while the error bars indicate the 95% confidence
interval. 50% of likelihood means that a classification technique ap-
pears at the top-rank for 50% of the studied datasets.

setting up a prediction model based on ensemble classifiers.

Finding 1. In within-project bug prediction, using
ensemble techniques improves the prediction perfor-
mance with respect to the best stand-alone classifier
(i.e., Näıve Bayes). We confirm that the models
based on Validation and Voting achieve slightly
better results. However, they are similar to those
obtained by other ensemble techniques.

4.2. RQ2 - Evaluation of Ensemble Techniques when
Adopted for Cross-Project Bug Prediction

Figure 3 depicts the box plots of the AUC-ROC and
MCC achieved on the 21 software systems in our dataset
by the experimented cross-project bug prediction models
(white asterisks highlight the means).

Also in this context, we found Näıve Bayes to have
a performance similar to that achieved by ensemble meth-
ods. Thus, we confirm again that the models based on
ensemble classifiers do not necessarily provide improve-
ments with respect to a well-selected stand-alone model.
As for ASCI, our results clearly show that its performance
is lower than Näıve Bayes, NBBoosting and NBBag-
ging. At the same time, AvgVoting shows a slightly
better accuracy with respect to ASCI in terms of MCC
(+2% on average). Thus, the application of our technique
in a cross-project setting does not provide improvements
in the prediction of bugs: possibly, this means that ASCI
suffers from the well-known problem of data heterogeneity.

In the second place, we noticed that the performance
of the Validation and Voting approach depends on the
operator used to combine the outputs of different stand-
alone classifiers: specifically, AvgVoting tends to per-
form slightly better than MaxVoting in terms of MCC

−0.2

0.0

0.2

0.4

0.6

Lo
g

NB
RBF

C45
SVM

DTa
ble M

LP

Avg
Vo

tin
g

M
ax

Vo
tin

g

CODEP

Ran
do

m
Fo

re
st

ASCI
NA

M
C

C

Figure 3: Boxplots of MCC achieved by the ensemble methods under
study and NB in the cross-project bug prediction context.

(21% vs 18%). Thus, the setting of the technique has
an impact on its performance by up to 3% in terms of
MCC. Furthermore, unlike previous work [53, 99] we found
that in some cases AvgVoting performs worse than other
ensemble techniques. For example, the average MCC
achieved by NBBoosting and NBBagging is respec-
tively 4% and 3% higher (25% and 24% vs 21%).

A third interesting finding regards the performance of
CODEP. Our results confirm those reported by Zhang
et al. [99]: in particular, we found that AvgVoting out-
performs CODEP (+2% in terms of MCC). Hence, we can
confirm that the AvgVoting approach tends to be more
stable and accurate than CODEP.

It is also interesting to discuss the results of the Ran-
dom Forest technique. Previous work by Robnik-Šikonja
[77] and Jiang et al. [43] observed that it is one of the most
reliable and accurate machine learners, however also in this
case we discovered that it is not able to provide improved
performance with respect to other ensemble techniques. In
particular, its performance is worse than AvgVoting in
terms of MCC (e.g., -2%).

As a more general observation, it is important to note
that the performance of all the cross-project models ex-
perimented is quite low—on average they do not exceed
25% in terms of MCC. On the one hand, all the experi-
mented models solely relied on code metrics as indepen-
dent variables. As suggested by literature [19, 23, 60] a
combination of predictors of different natures (e.g., pro-
cess metrics) can affect the overall performance of bug
prediction models. On the other hand, our results still
suggest that cross-project bug prediction is still far from
being actually usable in practice. For this reason, the re-
search community needs to investigate more the problem,
trying to identify useful tools to make cross-project bug
prediction actually effective.

The results discussed so far are also statistically sig-
nificant: Figure 4 shows the likelihood of each analyzed

Li
ke

lih
oo

d

R
an

do
m

F
or

es
t −

 3
.6

2

M
ax

V
ot

in
g

−
 3

.6
4

C
O

D
E

P
 −

 3
.7

4

A
vg

V
ot

in
g

−
 4

.5
5

A
S

C
I −

 5
.0

2

N
B

 −
 5

.1
0

N
B

B
oo

st
in

g
−

 5
.1

0

N
B

B
ag

gi
ng

 −
 5

.2
4

3
4

5
6

Figure 4: The likelihood of each technique in cross prediction appear-
ing in the top Nemenyi rank in terms of MCC. Circle dots are the
median likelihood, while the error bars indicate the 95% confidence
interval. 50% of likelihood means that a classification technique ap-
pears at the top-rank for 50% of the studied datasets.

ensemble techniques along with Näıve Bayes to appear
in the top Nemenyi rank. Näıve Bayes and the ensemble
using it as weak learner (e.g., NBBoosting and NBBag-
ging), together with ASCI, are able to achieve the best
performance in terms of MCC. All the other experimented
ensemble methods are statistically worst.

Finding 2. None of the cross-project experimented
models exceeds 25% in terms of MCC on average.
Identifying buggy classes using external sources of
information is still an open problem. Furthermore,
the use of ensemble techniques does not provide evi-
dent benefits with respect to stand-alone classifiers:
the models based on Näıve Bayes or using it as
a weak learner (e.g., NBBoosting and NBBag-
ging) achieve the best performance.

4.3. RQ3: Evaluation of Ensemble Techniques when
Adopted for Local Cross-Project Bug Prediction

On the basis of the results achieved in RQ2, we verified
whether the application of local learning—that was sug-
gested as a promising way to reduce data heterogeneity—
could improve the performance of ASCI. Figure 5 depicts
the box plots reporting MCC achieved on the 21 subject
systems when combining local learning and the ensem-
ble techniques considered in our study, along with those
achieved by the standard local bug prediction model that
relies on Näıve Bayes. To ease the comparison with the
results of RQ2, we also report box plots for the global
models built using the same set of classifiers.

As a first observation, local models do not always
achieve better performance with respect to global models.
While we could confirm previous findings [40], we also ob-
served that the use of ensemble techniques for local bug

0.00

0.25

0.50

NB

NBBoo
sti

ng

NBBag
gin

g

Avg
Vo

tin
g

M
ax

Vo
tin

g

CODEP

Ran
do

m
Fo

re
st

ASCI

M
C

C

Type

cross

local

Figure 5: Boxplots of MCC achieved by the ensemble methods un-
der study and NB in the global/local cross-project bug prediction
context.

prediction can sometimes badly affect the capabilities of
the resulting models. For example, NBBoosting showed
an average decrease in terms of MCC (i.e., -6%). Further-
more, in the comparison with Näıve Bayes, techniques
like NBBoosting and NBBagging showed similar per-
formance as the one of stand-alone classifiers. Another
interesting observation concerns the results of ensemble
techniques combining the output of different classifiers,
i.e., Validation and Voting and CODEP. In these
cases, local models tend to provide worse performance than
global ones. As for the two Validation and Voting
techniques experimented, a likely motivation for such re-
sult comes from the characteristics of the algorithms: as
shown in previous research [24, 75], this technique fails in
case of high variability among the predictions provided by
different classifiers because the majority of the base clas-
sifiers might wrongly classify the bug-proneness of a class,
thus negatively influencing the performance of techniques
which combine the output of different classifiers. A similar
conclusion can be drawn when applying Validation and
Voting. From a quantitative point of view, the local sce-
nario reduces the average MCC achieved by AvgVoting
and MaxVoting by up to 5% and 3%, respectively, when
compared to global models.

Looking at Random Forest, we found that this tech-
nique was badly affected when applying the clustering
technique. Specifically, local models exploiting such clas-
sifiers obtained a median MCC 7% lower with respect to
global cross-project models built using the same classifiers.

Besides the results discussed so far, we found ASCI
to be the only classifier actually able to exploit the lower
heterogeneity of data provided by local models. Indeed, it
was able to boost its MCC of 7%, becoming much more
effective than the baselines, both considering their global

and local versions. In other words, the local version of
ASCI provides better performance with respect to all the
other global and local models experimented.

Li
ke

lih
oo

d

R
an

do
m

F
or

es
t.L

oc
al

 −
 6

.3
1

M
ax

V
ot

in
g.

Lo
ca

l −
 6

.6
4

C
O

D
E

P
.L

oc
al

 −
 6

.9
5

A
vg

V
ot

in
g.

Lo
ca

l −
 7

.3
3

M
ax

V
ot

in
g.

G
lo

ba
l −

 7
.7

4

R
an

do
m

F
or

es
t.G

lo
ba

l −
 7

.7
9

N
B

B
oo

st
in

g.
Lo

ca
l −

 7
.9

0

N
B

.L
oc

al
 −

 8
.0

0

C
O

D
E

P
.G

lo
ba

l −
 8

.1
2

N
B

B
ag

gi
ng

.L
oc

al
 −

 8
.6

0

A
vg

V
ot

in
g.

G
lo

ba
l −

 9
.3

1

A
S

C
I.G

lo
ba

l −
 9

.8
1

N
B

.G
lo

ba
l −

 1
0.

07

N
B

B
oo

st
in

g.
G

lo
ba

l −
 1

0.
07

N
B

B
ag

gi
ng

.G
lo

ba
l −

 1
0.

17

A
S

C
I.L

oc
al

 −
 1

1.
19

4
6

8
10

12
14

Figure 6: The likelihood of each technique in global/local cross pre-
diction appearing in the top Nemenyi rank in terms of MCC. Circle
dots are the median likelihood, while the error bars indicate the 95%
confidence interval. 50% of likelihood means that a classification
technique appears at the top-rank for 50% of the datasets.

As previously done, we performed the Nemenyi test.
Figure 6 shows the likelihood of each of the analyzed en-
semble techniques along with Näıve Bayes to appear in
the top Nemenyi rank. Also in this case, we report both
local and global cross-project bug prediction models for
the sake of understandability. We could notice that three
global models, i.e., NBBagging.Global, NBBoost-
ing.Global, and NB.Global, have a similar average
likelihood as the best local model, i.e., ASCI.Local.
Thus, we can conclude that local and global models are
mostly equivalent from a statistical point of view. More-
over, local bug prediction should be considered a valuable
option when applying ASCI in the context of cross-project
bug prediction.

Finding 3. Local learning often does not improve
the performance of bug prediction models. The
only exception is represented by ASCI, in which
the local-project setting slightly improves the perfor-
mance. However, the statistical analysis highlighted
that local and global models are mostly equivalent in
terms of performance.

5. Discussion and Further Insights

In this section, we provide a deeper discussion of our
findings.

Figure 7 shows the box plots reporting MCC values
achieved by global and local cross-project models as well

0.0

0.5

1.0

NB

NBBoo
sti

ng

NBBag
gin

g

Avg
Vo

tin
g

M
ax

Vo
tin

g

CODEP

Ran
do

m
Fo

re
st

ASCI

M
C

C

Type

cross

within

local

Figure 7: Boxplots of MCC achieved by the ensemble methods under
study and NB in the global/local cross-project and within-project
bug prediction contexts.

as by within-project models built using the ensemble tech-
niques considered in our empirical study.

Looking at it, we can conclude that within-project mod-
els generally exhibit better performance with respect to
cross-project ones, thus confirming previous findings by
Turhan et al. [90]. The result holds for all the experi-
mented ensemble techniques. In general, we noticed that
also in the within-project scenario the use of ensemble
classifiers does not guarantee better prediction performance
with respect to stand-alone models, e.g., MaxVoting per-
forms 1% worse than Naive Bayes.

Looking more in-depth, we noticed that the model rely-
ing on Naive Bayes slightly improve its capabilities when
trained using a within-project strategy (+1% and +2%
with respect to global and local cross-project models, re-
spectively). This result is confirmed also when applying
Boosting (+1% and +5%, respectively) and Bagging
(+2% and +1%, respectively).

Interesting is the case of models based on Validation
and Voting. We found a significant performance decay
when changing the training strategy, independently from
the combination operation (i.e., Average or Maximum):
the MCC of AvgVoting and MaxVoting in the cross-
project evaluation context were 11% and 4%, respectively,
lower than those achieved in the within-project context
and even lower when looking at the local models (-15%
and -8%, respectively). Also in the case of classifiers based
on the combination of multiple learners (i.e., CODEP,
ASCI, and RandomForest) we observed important dif-
ferences when considering a within- or cross-project train-
ing. In particular, the average MCC reported by Ran-
dom Forest dropped by 13%, while CODEP and ASCI
dropped by 7% and 10%, respectively.

The Nemenyi test in Figure 8 shows the likelihood of
each of the analyzed ensemble techniques in the contexts
of local, within-project, and cross-project bug prediction.
The statistical analyses confirmed the results discussed so

Li
ke

lih
oo

d

R
an

do
m

F
or

es
t.L

oc
al

 −
 7

.6
4

M
ax

V
ot

in
g.

Lo
ca

l −
 8

.2
1

C
O

D
E

P
.L

oc
al

 −
 8

.4
8

A
vg

V
ot

in
g.

Lo
ca

l −
 8

.8
1

M
ax

V
ot

in
g.

G
lo

ba
l −

 9
.4

0

R
an

do
m

F
or

es
t.G

lo
ba

l −
 9

.6
0

C
O

D
E

P
.G

lo
ba

l −
 9

.7
9

A
S

C
I.W

ith
in

 −
 9

.9
5

N
B

B
oo

st
in

g.
Lo

ca
l −

 1
0.

05

N
B

.L
oc

al
 −

 1
0.

67

R
an

do
m

F
or

es
t.W

ith
in

 −
 1

0.
81

C
O

D
E

P
.W

ith
in

 −
 1

0.
81

A
vg

V
ot

in
g.

G
lo

ba
l −

 1
1.

21

A
S

C
I.G

lo
ba

l −
 1

1.
43

N
B

B
ag

gi
ng

.L
oc

al
 −

 1
1.

55

N
B

B
ag

gi
ng

.G
lo

ba
l −

 1
2.

55

N
B

.G
lo

ba
l −

 1
2.

60

N
B

B
oo

st
in

g.
G

lo
ba

l −
 1

2.
60

A
S

C
I.L

oc
al

 −
 1

3.
52

N
B

B
oo

st
in

g.
W

ith
in

 −
 1

8.
33

A
vg

V
ot

in
g.

W
ith

in
 −

 1
9.

43

N
B

.W
ith

in
 −

 2
0.

45

N
B

B
ag

gi
ng

.W
ith

in
 −

 2
0.

95

M
ax

V
ot

in
g.

W
ith

in
 −

 2
1.

17

5
10

15
20

25

Figure 8: The likelihood of each technique in within and global/local
cross-project prediction appearing in the top Nemenyi rank in terms
of MCC. Circle dots indicate the median likelihood, while the error
bars indicate the 95% confidence interval. 50% of likelihood means
that a classification technique appears at the top-rank for 50% of the
studied datasets.

far: indeed, within-project models are able to achieve bet-
ter performance in terms of MCC, thus being statistically
more accurate than the others.

As an additional analysis aimed at measuring the ro-
bustness of the experimented models, we computed the
Area Under the ROC Curve (AUC-ROC). This metric,
ranging between 0.5 and 1, reports the overall capabilities
of a model in discriminating buggy and non-buggy classes.
Values close to 1 indicate higher performance. It is im-
portant to note that AUC-ROC and MCC are two com-
plementary metrics: while MCC statistically measures the
accuracy of the predictions obtained by the classifier, the
AUC-ROC gives an indication of its robustness [34] (i.e.,
how well the classifier separates the binary classes).

Figure 9 shows boxplots representing the performance
of global cross-, local cross-, and within-project models in
terms of AUC-ROC. As shown, we observed that cross-
project models generally perform better than within-project
ones—this result shows that an interpretation solely based
on F-Measure does not provide a comprehensive picture of
the performance of bug prediction models. Looking deeper
into the results, we found that cross-project models behave
similarly, if not better than within-project ones when con-
sidering the AUC-ROC. From a practical point of view,
this means that cross-project models are more robust than
within-project ones (i.e., their performance does not vary
as much as one of cross-projects models when run on differ-
ent data), and at the same time within-project models are
more precise than cross-project ones (i.e., their accuracy
is higher than the one of cross-project models). This result
seems to suggest that within- and cross-project strategies
have different pros and cons, being to some extent comple-
mentary: as part of our future agenda, we plan to further

0.25

0.50

0.75

1.00

NB

NBBoo
sti

ng

NBBag
gin

g

Avg
Vo

tin
g

M
ax

Vo
tin

g

CODEP

Ran
do

m
Fo

re
st

ASCI

A
U

C
−

R
O

C Type

cross

within

local

Figure 9: Boxplots of AUC-ROC achieved by the ensemble methods
under study and NB in the global/local cross-project and within-
project bug prediction contexts.

investigate the extent to which a smart mixture of both the
strategies can lead to better bug prediction performance.

As a final discussion point, it is worth noting that the
local version of ASCI is the technique that performs bet-
ter than all the others. This result confirms that such
a technique should be preferred in case robustness is the
main objective that a practitioner wants to achieve when
running a bug prediction model.

The Nemenyi test in Figure 10 shows the likelihood
of each of the analyzed ensemble techniques along with
Naive Bayes in the contexts of within and cross-project
bug prediction. The statistical analyses confirmed the re-
sults discussed so far: indeed, there is no significant sta-
tistical difference between within-project bug prediction
models and cross-project ones when considering the AUC-
ROC.

6. Threats to Validity

In this section, we discuss the threats that might affect
the validity of the empirical study conducted in this paper.

Threats to construct validity. Threats in this category re-
gard the relationship between theory and observation. In
our work, a threat is represented by the dataset exploited.
We relied on several datasets available in the Seacraft
repository [59], which is widely considered reliable and,
indeed, has been also used in several previous works in
the field of bug prediction [13, 99, 91, 71, 28, 53, 52, 70].
Although we cannot exclude possible imprecision and/or
incompleteness of the data used in the study, we applied
a formal data preprocessing recommended by Shepperd
et al. [81], which allowed us to reduce noise and remove
erroneous entries present in the considered datasets. More-
over, it is important to note that to produce stable results

Li
ke

lih
oo

d

R
an

do
m

F
or

es
t.W

ith
in

 −
 4

.0
0

C
O

D
E

P
.W

ith
in

 −
 4

.5
2

A
S

C
I.W

ith
in

 −
 4

.5
7

N
B

B
oo

st
in

g.
Lo

ca
l −

 7
.1

4

R
an

do
m

F
or

es
t.L

oc
al

 −
 9

.4
0

C
O

D
E

P
.L

oc
al

 −
 1

0.
43

N
B

.L
oc

al
 −

 1
1.

52

R
an

do
m

F
or

es
t.G

lo
ba

l −
 1

2.
05

M
ax

V
ot

in
g.

Lo
ca

l −
 1

2.
26

N
B

B
ag

gi
ng

.L
oc

al
 −

 1
2.

55

N
B

.G
lo

ba
l −

 1
2.

86

N
B

B
oo

st
in

g.
G

lo
ba

l −
 1

2.
95

M
ax

V
ot

in
g.

G
lo

ba
l −

 1
3.

26

C
O

D
E

P
.G

lo
ba

l −
 1

3.
43

N
B

B
oo

st
in

g.
W

ith
in

 −
 1

3.
48

N
B

B
ag

gi
ng

.G
lo

ba
l −

 1
3.

81

A
vg

V
ot

in
g.

Lo
ca

l −
 1

4.
67

A
vg

V
ot

in
g.

G
lo

ba
l −

 1
6.

24

A
vg

V
ot

in
g.

W
ith

in
 −

 1
6.

38

A
S

C
I.G

lo
ba

l −
 1

6.
64

A
S

C
I.L

oc
al

 −
 1

6.
74

N
B

.W
ith

in
 −

 1
6.

95

M
ax

V
ot

in
g.

W
ith

in
 −

 1
7.

00

N
B

B
ag

gi
ng

.W
ith

in
 −

 1
7.

14

0
5

10
15

20

Figure 10: The likelihood of each technique in within and global/lo-
cal cross prediction appearing in the top Nemenyi rank in terms
of AUC-ROC. Circle dots indicate the median likelihood, while the
error bars indicate the 95% confidence interval. 50% of likelihood
means that a classification technique appears at the top-rank for
50% of the studied datasets.

we just considered software systems having less than 50%
of buggy classes [85].

As for the experimented prediction models, we ex-
ploited the implementation provided by the Weka frame-
work [30], which is widely considered as a reliable source.

We are aware of the importance of parameter tuning for
bug prediction models. To minimize this threat we used
the default parameters for each classifier used in our study,
since finding the best configuration for all of them would
have been too expensive [7]. As a future goal, we plan to
further analyze the impact of parameters’ configuration on
our findings.

Threats to conclusion validity. These are related to the
relation between treatment and outcome. To reduce the
impact of the adopted validation methodology, we relied
on the Leave-One-Out Cross-Validation methodology [79].
This choice was driven by results recently reported that
showed that such a validation technique is among the ones
that are more stable and reliable [86].

To ensure that the results would have not been bi-
ased by confounding effects due to data unbalance [17] or
highly correlated independent variables [25], we adopted
formal procedures aimed at (i) over-sampling the train-
ing sets [17] and (ii) removing non-relevant independent
variables through feature selection [31].

As for the evaluation of the performance of the ex-
perimented models, we considered AUC-ROC and MCC,
which have been highly recommended [32, 96] to correctly
interpret the results. Finally, we also statistically veri-
fied the validity of our findings by exploiting the Nemenyi
test [64] for statistical significance.

Threats to external validity. These are threats concerned
with the generalizability of the findings. We analyzed 21
different software projects coming from different applica-
tion domains and having different characteristics (i.e., de-
velopers, size, number of components, etc.). Of course, we
cannot claim the generalizability with respect to industrial
environments, however, a replication of our study in dif-
ferent settings, including the industrial one, is part of our
future research agenda.

Regarding the selected ensemble techniques, we consid-
ered those representing the state of the art [13, 71]. Finally,
it is important to note that the features in our models are
code metrics: as part of our future research agenda, we
aim at analyzing the impact of process- (e.g., the entropy
of changes proposed by Hassan [35]) and developer-related
(e.g., the number of developers working on a code compo-
nent [5]) metrics on our findings.

7. Conclusion

In this paper, we aimed at corroborating the results
achieved when evaluating ASCI in within- and cross-
project scenarios and benchmarking it with respect to a
variety of alternative ensemble techniques on a set of 21
software projects from the Promise dataset. In so doing,
we mitigated possible threats to validity affecting previ-
ous benchmarking studies through the application of some
precautions concerned with the quality of data used.

We found that the problem of cross-project bug pre-
diction is still far from being solved. The use of ensemble
techniques does not provide evident benefits with respect
to stand-alone classifiers, but in general, the Validation
and Voting and ASCI techniques should be preferred
among other ensemble methods.

When turning our attention to the combination of lo-
cal learning and ensemble classifiers, we did not observe
major differences; indeed, the statistical analyses revealed
that local and global models are mostly equivalent. Nev-
ertheless, we found that ASCI is the only technique that
is effective in exploiting local learning to reduce data het-
erogeneity and improve its prediction capabilities.

Finally, we provide insights into the relation between
cross- and within-project models. In the first place, the
latter are more precise than cross-project models, indepen-
dently from the training strategy (global vs local). Nev-
ertheless, the use of ensemble classifiers in the context of
within-project models does not guarantee better predic-
tion performance with respect to models relying on stand-
alone classifiers. On the other hand, we also observed that
cross-project models are more robust, meaning that the
two strategies might be complemented in order to take
advantage of the pros of each strategy.

Our findings provide some key implications for both
researchers and practitioners. For researchers, our results
confirm that the problem of cross-project bug prediction
still needs noticeable attention in order to devise method-
ologies to properly transfer external information into a new

context, especially because existing local learning methods
and ensemble techniques do not represent yet a suitable
solution; moreover, within-project models are not bullet-
proof and their robustness cannot be improved by means
of ensemble techniques: thus, more research is needed to
overcome such limitation. For practitioners, our findings
suggest that the use of more sophisticated techniques to
mix different classifiers does not provide immediate advan-
tages: thus, they need to carefully evaluate the suitability
of ensemble methods before using them. Similarly, collect-
ing bug-related data from the project under development
still represents the most effective way to apply bug pre-
diction in practice, even because the use of cross-project
models might actually lead to higher inspection costs.

The observations and implications discussed above rep-
resent the main starting point for our future research
agenda. Furthermore, we plan to replicate the study in
industrial and larger contexts, using a richer set of inde-
pendent variables, and investigating the impact of classi-
fiers configuration on our findings. In particular, we aim
at building a larger dataset based on the bug fixes that
Herbold et al. [41] are mining and validating. More im-
portantly, following the suggestions by Lanza et al. [51]
we plan to perform a user study with developers aimed at
evaluating the real usefulness of the suggestions provided
by the different bug prediction models experimented. Fi-
nally, we plan to investigate how to combine cross-project
and within-project strategies to achieve more accurate and
robust models.

Acknowledgment

Dario is supported by the European Commission grants
no. # 825040 (RADON H2020).

References

[1] Alpaydin, E., 2014. Introduction to machine learning. MIT
press.

[2] Baeza-Yates, R., Ribeiro-Neto, B., 1999. Modern Information
Retrieval. Addison-Wesley.

[3] Basili, V., Briand, L., Melo, W., Oct 1996. A validation
of object-oriented design metrics as quality indicators. IEEE
Transactions on Software Engineering 22 (10), 751–761.

[4] Bell, R., Ostrand, T., Weyuker, E., 2011. Does measuring code
change improve fault prediction? In: Proceedings of the 7th
International Conference on Predictive Models in Software En-
gineering. ACM, pp. 2:1–2:8.

[5] Bell, R., Ostrand, T., Weyuker, E., 2013. The limited impact
of individual developer data on software defect prediction. Em-
pirical Software Engineering 18 (3), 478–505.

[6] Bennin, K. E., Keung, J., Phannachitta, P., Monden, A., Men-
sah, S., 2017. Mahakil: Diversity based oversampling approach
to alleviate the class imbalance issue in software defect pre-
diction. IEEE Transactions on Software Engineering PP (99),
1–1.

[7] Bergstra, J., Bengio, Y., 2012. Random search for hyper-
parameter optimization. Journal of Machine Learning Re-
search, 281–305.

[8] Bettenburg, N., Nagappan, M., Hassan, A. E., 2012. Think
locally, act globally: Improving defect and effort prediction

models. In: Mining Software Repositories (MSR), 2012 9th
IEEE Working Conference on. IEEE, pp. 60–69.

[9] Bettenburg, N., Nagappan, M., Hassan, A. E., 2015. Towards
improving statistical modeling of software engineering data:
think locally, act globally! Empirical software engineering
20 (2), 294–335.

[10] Bezerra, M. E., Oliveira, A. L., Adeodato, P. J., Meira, S. R.,
2008. Enhancing RBF-DDA algorithm’s robustness: Neural
networks applied to prediction of fault-prone software modules.
Springer, pp. 119–128.

[11] Bezerra, M. E., Oliveira, A. L., Meira, S. R., 2007. A construc-
tive rbf neural network for estimating the probability of defects
in software modules. In: 2007 International Joint Conference
on Neural Networks. IEEE, pp. 2869–2874.

[12] Bowes, D., Hall, T., Harman, M., Jia, Y., Sarro, F., Wu, F.,
2016. Mutation-aware fault prediction. In: Proceedings of the
25th International Symposium on Software Testing and Anal-
ysis. ACM, pp. 330–341.

[13] Bowes, D., Hall, T., Petrić, J., 2017. Software defect predic-
tion: do different classifiers find the same defects? Software
Quality Journal, 1–28.

[14] Breiman, L., 1996. Bagging predictors. Machine learning
24 (2), 123–140.

[15] Camargo Cruz, A. E., Ochimizu, K., 2009. Towards logistic re-
gression models for predicting fault-prone code across software
projects. In: Proceedings of the 2009 3rd International Sym-
posium on Empirical Software Engineering and Measurement.
IEEE Computer Society, pp. 460–463.

[16] Canfora, G., De Lucia, A., Di Penta, M., Oliveto, R.,
Panichella, A., Panichella, S., 2013. Multi-objective cross-
project defect prediction. In: Proceedings of the 2013 IEEE
Sixth International Conference on Software Testing, Verifica-
tion and Validation. IEEE Computer Society, pp. 252–261.

[17] Chawla, N. V., Bowyer, K. W., Hall, L. O., Kegelmeyer,
W. P., 2002. Smote: Synthetic minority over-sampling tech-
nique. Journal of Artificial Intelligence Research 16 (1), 321–
357.

[18] Chidamber, S., Kemerer, C., Jun 1994. A metrics suite for ob-
ject oriented design. Software Engineering, IEEE Transactions
on 20 (6), 476–493.

[19] D’Ambros, M., Lanza, M., Robbes, R., 2012. Evaluating defect
prediction approaches: a benchmark and an extensive compar-
ison. Empirical Software Engineering 17 (4-5), 531–577.

[20] Dean, D. J., Nguyen, H., Gu, X., 2012. Ubl: Unsupervised be-
havior learning for predicting performance anomalies in virtu-
alized cloud systems. In: Proceedings of the 9th International
Conference on Autonomic Computing. ACM, pp. 191–200.

[21] Dempster, A. P., Laird, N. M., Rubin, D. B., 1977. Maximum
likelihood from incomplete data via the em algorithm. Journal
of the royal statistical society. Series B (methodological), 1–38.

[22] Di Nucci, D., Palomba, F., De Lucia, A., 2018. Evaluating the
adaptive selection of classifiers for cross-project bug predic-
tion. In: 2018 IEEE/ACM 6th International Workshop on Re-
alizing Artificial Intelligence Synergies in Software Engineering
(RAISE). IEEE, pp. 48–54.

[23] Di Nucci, D., Palomba, F., De Rosa, G., Bavota, G., Oliveto,
R., De Lucia, A., 2017. A developer centered bug prediction
model. IEEE Transactions on Software Engineering PP (99),
1–1.

[24] Di Nucci, D., Palomba, F., Oliveto, R., De Lucia, A., 2017.
Dynamic selection of classifiers in bug prediction: An adaptive
method. IEEE Transactions on Emerging Topics in Computa-
tional Intelligence 1 (3), 202–212.

[25] Dietterich, T., Sep. 1995. Overfitting and undercomputing in
machine learning. ACM Computing Surveys 27 (3), 326–327.

[26] Elish, M. O., 2014. A comparative study of fault density predic-
tion in aspect-oriented systems using mlp, rbf, knn, rt, denfis
and svr models. Artificial Intelligence Review 42 (4), 695–703.

[27] Freund, Y., Schapire, R. E., 1996. Experiments with a new
boosting algorithm. In: Icml. Vol. 96. pp. 148–156.

[28] Ghotra, B., McIntosh, S., Hassan, A. E., 2015. Revisiting the
impact of classification techniques on the performance of de-
fect prediction models. In: Proceedings of the International
Conference on Software Engineering. IEEE, pp. 789–800.

[29] Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.,
2011. The misuse of the nasa metrics data program data sets
for automated software defect prediction. In: Evaluation & As-
sessment in Software Engineering (EASE 2011), 15th Annual
Conference on. IET, pp. 96–103.

[30] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., Witten, I. H., 2009. The weka data mining software: An
update. SIGKDD Explorations Newsletter. 11 (1), 10–18.

[31] Hall, M. A., 1998. Correlation-based feature selection for ma-
chine learning. Tech. rep.

[32] Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S., 2011.
Developing fault-prediction models: What the research can
show industry. IEEE Software 28 (6), 96–99.

[33] Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S., 2012.
A systematic literature review on fault prediction performance
in software engineering. IEEE Transactions on Software Engi-
neering 38 (6), 1276–1304.

[34] Hanley, J. A., McNeil, B. J., 1982. The meaning and use of
the area under a receiver operating characteristic (roc) curve.
Radiology 143 (1), 29–36.

[35] Hassan, A. E., 2009. Predicting faults using the complexity of
code changes. In: ICSE. IEEE Press, Vancouver, Canada, pp.
78–88.

[36] He, P., Li, B., Liu, X., Chen, J., Ma, Y., 2015. An empirical
study on software defect prediction with a simplified metric
set. Information and Software Technology 59 (C), 170–190.

[37] He, Z., Peters, F., , T., Yang, Y., 2013. Learning from open-
source projects: An empirical study on defect prediction. In:
2013 ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement. IEEE, pp. 45–54.

[38] Herbold, S., 2013. Training data selection for cross-project de-
fect prediction. In: Proceedings of the 9th International Con-
ference on Predictive Models in Software Engineering. ACM,
p. 6.

[39] Herbold, S., Trautsch, A., Grabowski, J., 2017. A compar-
ative study to benchmark cross-project defect prediction ap-
proaches. IEEE Transactions on Software Engineering PP (99),
1–1.

[40] Herbold, S., Trautsch, A., Grabowski, J., 2017. Global vs. local
models for cross-project defect prediction. Empirical Software
Engineering 22 (4), 1866–1902.

[41] Herbold, S., Trautsch, A., Ledel, B., 2020. Large-scale manual
validation of bugfixing changes. In: Proceedings of the 17th
International Conference on Mining Software Repositories. pp.
611–614.

[42] Ho, T. K., 1995. Random decision forests. In: Document Anal-
ysis and Recognition, 1995., Proceedings of the Third Interna-
tional Conference on. Vol. 1. IEEE, pp. 278–282.

[43] Jiang, Y., Cukic, B., Menzies, T., 2008. Can data transforma-
tion help in the detection of fault-prone modules? In: Pro-
ceedings of the 2008 Workshop on Defects in Large Software
Systems. ACM, pp. 16–20.

[44] Jureczko, M., Madeyski, L., 2010. Towards identifying software
project clusters with regard to defect prediction. In: Proceed-
ings of the 6th international conference on predictive models
in software engineering. pp. 1–10.

[45] Khoshgoftaar, T. M., Gao, K., Seliya, N., 2010. Attribute se-
lection and imbalanced data: Problems in software defect pre-
diction. In: 2010 22nd IEEE International Conference on Tools
with Artificial Intelligence. Vol. 1. pp. 137–144.

[46] Khoshgoftaar, T. M., Goel, N., Nandi, A., McMullan, J., 1996.
Detection of software modules with high debug code churn in a
very large legacy system. In: Software Reliability Engineering.
IEEE, pp. 364–371.

[47] Kim, S., Zhang, H., Wu, R., Gong, L., 2011. Dealing with noise
in defect prediction. In: Proceedings of International Confer-
ence on Software Engineering. IEEE, pp. 481–490.

[48] Kim, S., Zimmermann, T., Whitehead Jr, E. J., Zeller, A.,
2007. Predicting faults from cached history. In: Proceedings of
the International Conference on Software Engineering. IEEE,
pp. 489–498.

[49] Kittler, J., Hatef, M., Duin, R. P., Matas, J., 1998. On com-
bining classifiers. IEEE transactions on pattern analysis and
machine intelligence 20 (3), 226–239.

[50] Koning, A. J., Franses, P. H., Hibon, M., Stekler, H. O., 2005.
The m3 competition: Statistical tests of the results. Interna-
tional Journal of Forecasting 21 (3), 397–409.

[51] Lanza, M., Mocci, A., Ponzanelli, L., 2016. The tragedy of
defect prediction, prince of empirical software engineering re-
search. IEEE Software 33 (6), 102–105.

[52] Lessmann, S., Baesens, B., Mues, C., Pietsch, S., 2008. Bench-
marking classification models for software defect prediction: A
proposed framework and novel findings. IEEE Transactions on
Software Engineering 34 (4), 485–496.

[53] Liu, Y., Khoshgoftaar, T. M., Seliya, N., 2010. Evolutionary
optimization of software quality modeling with multiple reposi-
tories. IEEE Transactions on Software Engineering 36 (6), 852–
864.

[54] Lumpe, M., Vasa, R., Menzies, T., Rush, R., Turhan, B., 2012.
Learning better inspection optimization policies. International
Journal of Software Engineering and Knowledge Engineering
22 (05), 621–644.

[55] Ma, Y., Luo, G., Zeng, X., Chen, A., 2012. Transfer learning
for cross-company software defect prediction. Information and
Software Technology 54 (3), 248–256.

[56] Malhotra, R., 2016. An empirical framework for defect predic-
tion using machine learning techniques with android software.
Applied Soft Computing 49, 1034–1050.

[57] Marcus, A., Poshyvanyk, D., Ferenc, R., 2008. Using the
conceptual cohesion of classes for fault prediction in object-
oriented systems. IEEE Transactions on Software Engineering
34 (2), 287–300.

[58] Menzies, T., Butcher, A., Cok, D., Marcus, A., Layman, L.,
Shull, F., Turhan, B., Zimmermann, T., 2013. Local versus
global lessons for defect prediction and effort estimation. IEEE
Transactions on software engineering 39 (6), 822–834.

[59] Menzies, T., Krishna, R., Pryor, D., 2017. The seacraft repos-
itory of empirical software engineering data.
URL https://zenodo.org/communities/seacraft

[60] Moser, R., Pedrycz, W., Succi, G., 2008. Analysis of the re-
liability of a subset of change metrics for defect prediction.
In: Proceedings of the Second ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measurement.
ACM, pp. 309–311.

[61] Nagappan, N., Ball, T., 2005. Static analysis tools as early
indicators of pre-release defect density. In: Proceedings of the
27th International Conference on Software Engineering. ACM,
pp. 580–586.

[62] Nam, J., Fu, W., Kim, S., Menzies, T., Tan, L., 2017. Het-
erogeneous defect prediction. IEEE Transactions on Software
Engineering.

[63] Nam, J., Pan, S. J., Kim, S., 2013. Transfer defect learning. In:
Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, pp. 382–391.

[64] Nemenyi, P., 1962. Distribution-free multiple comparisons. In:
Biometrics. Vol. 18. International Biometric Soc 1441 I ST,
NW, SUITE 700, WASHINGTON, DC 20005-2210, p. 263.

[65] Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A., 2007.
Predicting vulnerable software components. In: ACM Confer-
ence on Computer and Communications Security (CCS). CCS
’07. pp. 529–540.

[66] Nguyen, T. T., Nguyen, T. N., Phuong, T. M., 2011. Topic-
based defect prediction (nier track). In: Proceedings of the
33rd International Conference on Software Engineering. ACM,
pp. 932–935.

[67] Nikora, A. P., Munson, J. C., 2003. Developing fault predictors
for evolving software systems. In: Proceedings of the 9th IEEE
International Symposium on Software Metrics. IEEE CS Press,

pp. 338–349.
[68] O’brien, R. M., 2007. A caution regarding rules of thumb for

variance inflation factors. Quality & Quantity 41 (5), 673–690.
[69] Pai, G. J., Dugan, J. B., 2007. Empirical analysis of soft-

ware fault content and fault proneness using bayesian methods.
IEEE Transactions on Software Engineering 33 (10), 675–686.

[70] Palomba, F., Zanoni, M., Fontana, F. A., De Lucia, A.,
Oliveto, R., 2017. Toward a smell-aware bug prediction model.
IEEE Transactions on Software Engineering.

[71] Panichella, A., Oliveto, R., De Lucia, A., 2014. Cross-project
defect prediction models: L’union fait la force. In: Proceedings
of the IEEE Conference on Software Maintenance, Reengineer-
ing and Reverse Engineering. IEEE, pp. 164–173.

[72] Pascarella, L., Palomba, F., Bacchelli, A., 2019. Fine-grained
just-in-time defect prediction. Journal of Systems and Software
150, 22–36.

[73] Pascarella, L., Spadini, D., Palomba, F., Bruntink, M., Bac-
chelli, A., 2018. Information needs in contemporary code re-
view. Proceedings of the ACM on Human-Computer Interac-
tion 2 (CSCW), 1–27.

[74] Pecorelli, F., Di Nucci, D., Palomba, F., De Lucia, A., 2020.
Adaptive selection of classifiers for bug prediction: A large-
scale empirical analysis of its performance and a benchmark
study - replication package.
URL https://bit.ly/36ECrTE

[75] Petrić, J., Bowes, D., Hall, T., Christianson, B., Baddoo, N.,
2016. Building an ensemble for software defect prediction based
on diversity selection. In: Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering
and Measurement. ACM, p. 46.

[76] Pinzger, M., Nagappan, N., Murphy, B., 2008. Can developer-
module networks predict failures? In: Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering. pp. 1–12.

[77] Robnik-Šikonja, M., 2004. Improving random forests. In: Eu-
ropean conference on machine learning. Springer, pp. 359–370.

[78] Rokach, L., 2010. Ensemble-based classifiers. Artificial Intelli-
gence Review 33 (1), 1–39.

[79] Sammut, C. (Ed.), 2010. Leave-One-Out Cross-Validation.
Springer US, Boston, MA, pp. 600–601.

[80] Scanniello, G., Gravino, C., Marcus, A., Menzies, T., 2013.
Class level fault prediction using software clustering. In: Pro-
ceedings of the 28th IEEE/ACM International Conference on
Automated Software Engineering. IEEE Press, pp. 640–645.

[81] Shepperd, M., Song, Q., Sun, Z., Mair, C., Sept 2013. Data
quality: Some comments on the nasa software defect datasets.
Software Engineering, IEEE Transactions on 39 (9), 1208–
1215.

[82] Song, Q., Jia, Z., Shepperd, M., Ying, S., Liu, J., 2011. A
general software defect-proneness prediction framework. IEEE
Transactions on Software Engineering 37 (3), 356–370.

[83] Stone, M., 1974. Cross-validatory choice and assessment of sta-
tistical predictions. Journal of the royal statistical society. Se-
ries B (Methodological), 111–147.

[84] Tantithamthavorn, C., Hassan, A. E., Matsumoto, K., 2018.
The impact of class rebalancing techniques on the performance
and interpretation of defect prediction models. IEEE Transac-
tions on Software Engineering.

[85] Tantithamthavorn, C., McIntosh, S., Hassan, A. E., Mat-
sumoto, K., 2016. Automated parameter optimization of classi-
fication techniques for defect prediction models. In: Proceed-
ings of the 38th International Conference on Software Engi-
neering. pp. 321–332.

[86] Tantithamthavorn, C., McIntosh, S., Hassan, A. E., Mat-
sumoto, K., 2017. An empirical comparison of model validation
techniques for defect prediction models. IEEE Transanctions
on Software Engineering 43 (1), 1–18.

[87] Thomas, S. W., Nagappan, M., Blostein, D., Hassan, A. E.,
2013. The impact of classifier configuration and classifier com-
bination on bug localization. IEEE Transactions on Software
Engineering 39 (10), 1427–1443.

[88] Todd L. Graves, Alan F. Karr, J. S. M., Siy, H. P., 2000. Pre-
dicting fault incidence using software change history. Software
Engineering, IEEE Transactions on 26 (7), 653–661.

[89] Tosun, A., Turhan, B., Bener, A., 2008. Ensemble of software
defect predictors: a case study. In: Proceedings of the Sec-
ond ACM-IEEE international symposium on Empirical soft-
ware engineering and measurement. ACM, pp. 318–320.

[90] Turhan, B., Menzies, T., Bener, A. B., Di Stefano, J., 2009. On
the relative value of cross-company and within-company data
for defect prediction. Empirical Software Engineering 14 (5),
540–578.

[91] Wang, T., Li, W., Shi, H., Liu, Z., 2011. Software defect pre-
diction based on classifiers ensemble. Journal of Information
& Computational Science 8 (16), 4241–4254.

[92] Watanabe, S., Kaiya, H., Kaijiri, K., 2008. Adapting a fault
prediction model to allow inter languagereuse. In: Proceed-
ings of the 4th International Workshop on Predictor Models in
Software Engineering. ACM, pp. 19–24.

[93] Wolf, T., Schroter, A., Damian, D., Nguyen, T. H. D., 2009.
Predicting build failures using social network analysis on devel-
oper communication. In: Proceedings of the 31st International
Conference on Software Engineering. pp. 1–11.

[94] Wolpert, D. H., 1992. Stacked generalization. Neural networks
5 (2), 241–259.

[95] Xu, Z., Liu, J., Yang, Z., An, G., Jia, X., 2016. The impact of
feature selection on defect prediction performance: An empiri-
cal comparison. In: 2016 IEEE 27th International Symposium

on Software Reliability Engineering (ISSRE). IEEE, pp. 309–
320.

[96] Yao, J., Shepperd, M., 2020. Assessing software defection pre-
diction performance: why using the matthews correlation co-
efficient matters. In: Proceedings of the Evaluation and As-
sessment in Software Engineering. pp. 120–129.

[97] Zhang, F., Keivanloo, I., Zou, Y., 2017. Data transformation in
cross-project defect prediction. Empirical Software Engineer-
ing, 1–33.

[98] Zhang, F., Zheng, Q., Zou, Y., Hassan, A. E., 2016. Cross-
project defect prediction using a connectivity-based unsuper-
vised classifier. In: Proceedings of the 38th International Con-
ference on Software Engineering. ACM, pp. 309–320.

[99] Zhang, Y., Lo, D., Xia, X., Sun, J., 2015. An empirical study
of classifier combination for cross-project defect prediction. In:
Proceedings of the IEEE Annual Computer Software and Ap-
plications Conference. Vol. 2. IEEE, pp. 264–269.

[100] Zimmermann, T., Nagappan, N., Gall, H., Giger, E., Murphy,
B., 2009. Cross-project defect prediction: a large scale exper-
iment on data vs. domain vs. process. In: Proceedings of the
the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering. ACM, pp. 91–100.

[101] Zimmermann, T., Premraj, R., Zeller, A., 2007. Predicting
defects for Eclipse. In: Proceedings of 3rd ICSE International
Workshop on Predictor Models in Software Engineering. IEEE
Computer Society.

