
Noname manuscript No.
(will be inserted by the editor)

On the Adequacy of Static Analysis Warnings with
Respect to Code Smell Prediction

Fabiano Pecorelli · Savanna Lujan ·
Valentina Lenarduzzi · Fabio Palomba ·
Andrea De Lucia

Received: date / Accepted: date

Abstract Code smells are poor implementation choices that developers apply
while evolving source code and that affect program maintainability. Multiple
automated code smell detectors have been proposed: while most of them re-
lied on heuristics applied over software metrics, a recent trend concerns the
definition of machine learning techniques. However, machine learning-based
code smell detectors still suffer from low accuracy: one of the causes is the
lack of adequate features to feed machine learners. In this paper, we face this
issue by investigating the role of static analysis warnings generated by three
state-of-the-art tools to be used as features of machine learning models for
the detection of seven code smell types. We conduct a three-step study in
which we (1) verify the relation between static analysis warnings and code
smells and the potential predictive power of these warnings; (2) build code
smell prediction models exploiting and combining the most relevant features
coming from the first analysis; (3) compare and combine the performance of
the best code smell prediction model with the one achieved by a state of the
art approach. The results reveal the low performance of the models exploit-
ing static analysis warnings alone, while we observe significant improvements
when combining the warnings with additional code metrics. Nonetheless, we
still find that the best model does not perform better than a random model,

Fabiano Pecorelli · Savanna Lujan
Tampere University, Finland
E-mail: fabiano.pecorelli@tuni.fi, savanna.lujan@tuni.fi

Valentina Lenarduzzi
LUT University, Finland
E-mail: valentina.lenarduzzi@lut.fi

Fabio Palomba · Andrea De Lucia
SeSa Lab, University of Salerno, Italy
E-mail: fpalomba@unisa.it, adelucia@unisa.it

2 Fabiano Pecorelli et al.

hence leaving open the challenges related to the definition of ad-hoc features
for code smell prediction.

Keywords Code Smells · Static Analysis Tools · Machine Learning.

1 Introduction

Software maintenance is known to be the most expensive phase of the software
lifecycle [10]. This is not only due to continuous change requests, but also to
the increasing complexity that make developers unable to cope with software
quality requirements [30]. Indeed, in this scenario developers are often enforced
to set aside good design and implementation principles in order to deliver fast,
possibly letting emerge the so-called technical debt [15], i.e., the introduction
of quick workarounds in the source code that worsen its maintainability.

A relevant form of technical debt is represented by bad code smells [21],
a.k.a., code smells or simply smells: these are symptoms of poor implementa-
tion solutions that previous research has negatively related to program com-
prehensibility [1, 59], change- and defect-proneness [28, 52], and maintenance
costs [62, 63]. The previous empirical investigations into the relation between
code smells and software maintainability has motivated researchers in defining
automated solutions for detecting code smells [9, 54].

Most of the existing techniques rely on the combination of various soft-
ware metrics (e.g., cohesion and coupling [14]) through rules and heuristics
[43, 47, 49]). While these have been shown to reach an acceptable accuracy,
there are still some key limitations that preclude their wide usage in prac-
tice. In the first place, the output of these heuristic-based detectors cannot be
objectively assessed by developers [7, 46, 64]. Secondly, different detectors do
not output the same results, making even harder for developers to decide on
whether to refactor source code [5]. Finally, these detectors require thresholds
to distinguish smelly from non-smelly components which are hard to tune [6].

For the above-mentioned reasons, researchers have been starting consider-
ing the application of machine learning techniques as an alternative. Indeed,
these may be exploited to address the limitations of heuristic methods by com-
bining multiple metrics and learning code smell instances considered relevant
by developers without the specification of any threshold [9]. Nonetheless, the
promises of machine learning-based code smell detection have not yet been
kept. Di Nucci et el. [18] showed that these detectors fail in most cases, while
Pecorelli et al. [55, 56] identified (1) the little contributions given by the fea-
tures investigated so far and (2) the limited amount of code smell instances
available to train a machine learner in an appropriate manner as the two main
causes leading to those failures.

In this article, we started addressing the first problem by conducting a
preliminary investigation into the contribution given by the warnings of auto-
mated static analysis tools to the classification capabilities of machine learning-
based code smell detectors. The choice of focusing on those warnings was moti-
vated by the type of design issues that can be identified through static analysis

On Static Analysis Tools and Code Smell Prediction 3

tools. More particularly, while some of the warnings they raise are not directly
related to source code design and code quality, there are several exceptions.
For instance, let consider the warning category called ‘bad practice’ raised by
FindBugs, one of the most widely used static analysis tools in practice [68].
According to the list of warnings reported in the official documentation,1 this
category includes a number of design-related warnings. Similarly, the warning
category ‘design’ provided by Checkstyle and PMD is also associated with
design issues. As such, static analysis tools actually deal with the design of
source code and pinpoint a number of violations that may be connected to
the presence of code smells. In the context of this paper, we first hypothesized
that the indications provided by the static analysis tools [69] can be potentially
useful to characterize code smell instances. Secondly, we conjectured that the
incorporation of these warnings within intelligent systems may represent a way
to reduce the high amount of false positives they output [24].

To verify our hypotheses, we have investigated the potential contribution
given by individual types of warnings output by three static analysis tools, i.e.,
Checkstyle, FindBugs, and PMD, to the prediction of three code smell
types, i.e., God Class, Spaghetti Code, and Complex Class. To this purpose, we
analyzed five open-source projects. Then, we used the most relevant features
coming from the first analysis to build and assess the capabilities of machine
learning models when detecting the three considered smells. The results of
the study highlighted promising results: models built using the warnings of
individual static analysis tools score between 55% and 91% in terms of F-
Measure, while the warning types that contribute the most to the performance
of the learners depended on the specific code smell considered.

This paper extends our previous work [36] and enlarges our investigation to-
ward the usefulness of static analysis warnings for machine learning-based code
smell detection. We extend the number of code smells and software projects
considered, taking into account a total of seven code smell types over 25 re-
leases of 5 open-source projects. Afterwards, we design a three-step empirical
study. First, we conduct a preliminary, motivational investigation into the ac-
tual relation between static analysis warnings and code smells, also attempting
to assess the potential predictive power of those warnings.

Second, we start replicating the study conducted in our original paper [36],
analyzing the performance of code smell detection techniques based machine
learners and using the static analysis warnings as features. The results of our
replication study do not confirm our previous findings: indeed, when con-
sidering a larger set of projects, the performance of the machine learners are
way lower, especially in terms of precision. In response to this negative result,
we further investigate the problem by studying the overlap among the predic-
tions made by machine learning models built using the warnings of different
static analysis tools as features: such an analysis reveals a high complementar-
ity suggesting that a combination of those warnings could potentially improve

1The FindBugs official documentation: http://findbugs.sourceforge.net/

bugDescriptions.html.

4 Fabiano Pecorelli et al.

the code smell detection capabilities. As such, we define and experiment a new
combined model which significantly perform better than the individual mod-
els. In the last part of our study, we go beyond and analyze how this combined
model can be further combined with additional code metrics that have been
used for code smell detection in previous work [9]. While the performance of
the combined model significantly performs better than previous approaches
based on software metrics.

To sum up, our paper provides the following contributions:

1. A preliminary analysis on the suitability of static analysis warnings in the
context of code smell detection;

2. An empirical understanding of how machine learning techniques for code
smell detection work when fed with warnings generated by automated
static analysis tools;

3. A machine learning-based detector that combines multiple automated
static analysis tools, improving on the performance of individual detec-
tors;

4. An empirical understanding of how warning-based machine learning tech-
niques for code smell detection work in comparison with metric-based ones;

5. A machine learning-based detector that combines static analysis warnings
and code metrics, further improving detectors’ performance;

6. A comprehensive replication package [58] which reports all data used in our
study and that can be used by researchers to verify/replicate our results
as well as build upon our findings.

Structure of the paper. Section 2 overviews the state of the art in machine
learning for code smell detection. Section 3 reports the methodology employed
to address our research objectives, while Section 4 reports the results obtained.
Section 5 further discusses the main findings of the study and overviews the
implications that they have for the research community. In Section 6 we discuss
the threats to the validity of our study. Finally, Section 7 concludes the paper
and discusses our future research agenda.

2 Related Work

The use of machine learning techniques for code smell detection is recently
gaining attention, as proved by the amount of publications in the last years.
The interested reader can find a complete overview of the research done in the
field in the survey by Azeem et al. [9].

2.1 Machine Learning for Code Smell Detection

Some early work has been conducted with the aim of devising machine learning
solutions that could be applied to detect individual code smell types, e.g.,

On Static Analysis Tools and Code Smell Prediction 5

[70, 26, 27]. More recent papers have instead attempted to make machine
learning techniques general enough to support the identification of multiple
code smells. This is clearly the case of our empirical study and, for this reason,
we overview in the following the papers more closely connected.

Kreimer [29] proposed a detection approach for two code smells (Long
Method and Large Class) based on a decision tree model in two software
systems. The model provided a good level of accuracy. The achieved results
were later confirmed by Amorin et al. [3], who tested the previous technique
over a medium-scale system, reaching an accuracy up to 78%.

Khomh et al. [27, 26] employed Bayesian belief networks for the detection
of three code smells (Blob, Functional Decomposition, and Spaghetti Code)
from different open-source software, obtaining promising results.

Maiga et al. [41] adopted a support vector machine based approach to
build a code smell detection model. The model was trained using software
metrics as features for each instance and was extended taking into account
the practitioners feedback [40]. The extended model is able to capture four
code smells (Blob, Functional Decomposition, Spaghetti Code and Swiss Army
Knife) with an accuracy up to 74%.

Arcelli Fontana et al. were among the most active researchers in the
field and applied machine learning techniques to detect multiple code smell
types [8], estimate their harmfulness [8], and compute their intensity [4], show-
ing the potential usefulness of these techniques. More specifically, in [8] they
applied 16 different machine-learning techniques on four types of code smells
(Data Class, Large Class, Feature Envy, Long Method) and on 74 software
systems. The highest accuracy (up to 95%) was achieved by J48 and Random
Forest. In a follow-up study [4], the authors focused on the classification of
these four code smell severity using the same machine learning techniques.
Also in this work, the best models reached highest accuracy level (88%–96%).

In a replication study conducted by Di Nucci et al. [18], the authors
pointed out that the accuracy of machine learning-based code smell detectors
is strongly connected to the reliability of the dependent variable. This study
has driven our choice of focusing on a manually-built and publicly available
dataset of code smell instances [51, 48].

Pecorelli et al. [57] investigated the adoption of machine learning to classify
code smells based on the perceived criticality. The authors ranked four code
smells (God Class, Complex Class, Spaghetti Code, and Shotgun Surgery)
based on machine learning depending on the harmfulness assigned by develop-
ers. Results showed that Random forest was the best modelling technique with
an accuracy between 72% and 85%. Pecorelli et al. [55, 56] also focused on the
role of data balancing for code smell prediction. More particularly, the authors
first conducted a large-scale study to compare the performance of heuristic-
based and machine learning techniques (Random Forest, J48, Support Vector
Machine, and Naıve Bayes algorithm) using metrics to detect five code smells
(God Class, Spaghetti Cod, Class Data Should be Private, Complex Class, and
Long Method) in 25 releases of 13 software systems [55]: their results revealed
that heuristic-based technique has a slightly better performance than machine

6 Fabiano Pecorelli et al.

learning approaches and that one of the key issues making the performance of
machine learning poor was the high imbalance between smelly and non-smelly
components arising in real software systems. In a follow-up work [56], the au-
thors discovered that, in most cases, machine learning-based detectors work
better when no balancing is applied.

A recent study [61] applied two machine learning algorithms (Logistic Re-
gression and Bag of Words) to better locate code smells with a precision of
98% and a recall of 97%. Differently from the others, this approach mines and
analyzes code smell discussions from textual artefacts (e.g., code reviews).

The role of machine learning algorithms was also investigated in the context
of the relation between code quality and fault prediction capabilities [38, 50].
Finally, Lujan et al. [37] investigated the possibility of prioritizing code smell
refactoring with the help of fault prediction results.

With respect to the papers discussed above, ours must be seen as com-
plementary. We aimed at assessing the capabilities of the warnings raised by
automated static analysis tools as features for code smell prediction. As such,
we build upon the literature on the identification of proper features for detect-
ing code smells and present a novel methodology.

2.2 Machine Learning for Static Analysis Tools detection

On a different note, a few works have applied machine learning techniques
to analyze static analysis warnings and, particularly, to evaluate change- and
fault-proneness of SonarQube violations [23, 20, 31].

Tollin et al. [23], analyzed in the context of two industrial projects, ana-
lyzed whether the warnings given by the tool are associated to classes with
higher change-proneness, confirming the relation. Falessi et al. [20] analyzed
106 SonarQube violations in an industrial project: the results demonstrated
that 20% of faults were preventable should these violations have been removed.

Lenarduzzi et al. [31] assessed the fault-proneness of SonarQube viola-
tions on 21 open-source systems applying seven machine learning algorithms
(AdaBoost, Bagging, Decision Tree, Extremely Randomized Trees, Gradient
Boosting, Random Forest, and XGBoost), and logistic regression. Results
showed that violations classified as “bugs” hardly lead to a failure.

Another work [32] applied eight machine learning techniques (Linear Re-
gression, Random Forest, Gradient Boost, Extra Trees, Decision Trees, Bag-
ging, AdaBoost, SVM) on 33 Java projects, to understand if Technical Debt—
based on SonarQube violations—could be derived from the 28 software met-
rics measured by SonarQube. Results show that technical debt are not corre-
lated with the 28 software metrics. Considering another static analysis tool, a
recent study [34] investigated if pull requests are accepted in open-source based
on quality flaws identified by PMD. The study considered 28 Java open-source
projects, analyzing the presence of 4.7M PMD rules in 36K pull requests. As
machine Learning, they used eight different classifiers: Logistic Regression, Ad-
aBoost, Bagging, Decision Tree, ExtraTrees, GradientBoost, Random Forest,

On Static Analysis Tools and Code Smell Prediction 7

and XGBoost. Unexpectedly, quality flaws measured by PMD turned out not
to affect the acceptance of a pull request at all.

Our work is complementary to those discussed above, since our goal is to
exploit the outcome of different static analysis tools in order to improve the
accuracy of code smell detection.

3 Research Methodology

In the context of this empirical study, we had the ultimate goal of assessing the
extent to which static analysis warnings can contribute to the identification of
design issues in source code. We faced this goal by means of multiple analyses
and research angles.

We defined three main dimensions. At first, we conducted a statistical
study aiming at investigating whether and to what extent can static analysis
warnings be actually used and useful in the context of code smell detection.
Such an analysis must be deemed as preliminary, since it allowed us to quan-
tify the potential benefits provided by those warnings: should this have not
provided sufficiently acceptable results, this would have already stopped our
investigation. On the contrary, a positive result would have provided further
motivations into the need for a closer investigation on the role of static analysis
warnings for code smell detection.

In this regard, we defined the first two research questions. In the first place,
we aimed at assessing if the distribution of static analysis warnings differs
when computed on classes affected and not affected by code smells. Rather
than approaching the problem from a correlation perspective, we preferred to
use a distribution analysis since the latter may provide insights on the specific
types of warnings that are statistically different in the two sets of classes, i.e.,
smelly or smelly-free—on the contrary, correlations might have only given an
indication of the strength of association, without reporting on the statistical
significance when computed on smelly and non-smelly classes. We asked:

RQ1. How do static analysis warning types differ in classes affected and
not affected by code smells?

In the second place, we complemented the distribution analysis with an
additional investigation into the potential usefulness of static analysis warnings
for code smell detection. While the first preliminary analysis had the goal to
assess the distribution of warnings in classes affected or not by code smells, this
second step aimed at quantifying the contribution that such warnings might
provide to code smell prediction models. In particular, we asked:

RQ2. How do static analysis warnings contribute to the classification of
code smells?

Once we had ensured the feasibility of a deeper analysis, we then proceeded
with the investigation of the performance achieved by a code smell detection
model relying on static analysis warnings as predictors. This analysis allowed
us to provide quantitative insights on the actual usefulness of static analysis

8 Fabiano Pecorelli et al.

warnings, other than understanding their limitations when considered in the
context of code smell detection. This led to the definition of three additional
research questions.

First, on the basis of the results achieved in the preliminary study, we
devised machine learning-based techniques—one for each static analysis tool
considered, as explained later in this section—that exploit the warnings pro-
viding more contribution to the classification of code smells. Afterwards, we
assessed their performance by addressing RQ3:

RQ3. How do machine learning techniques that exploit the warnings of
single static analysis tools perform in the context of code smell
detection?

Once we had assessed the classification performance of the individual mod-
els created in RQ3, we discovered that these models had low performance,
especially due to false positives. To overcome this issue, we moved toward the
analysis of the complementarity between the individual models, namely the
extent to which different models could identify different code smell instances.
This was relevant because a positive answer could have paved the way to a
combination of multiple models. Hence, we asked:

RQ4. What is the orthogonality among the individual machine learning-
based code smell detectors?

Given the results achieved when addressing RQ4, we then devised a com-
bined model. The process required the identification of the optimal subset of
the static analysis warnings exploited by different tools. While investigating
the performance of such a combined model, we addressed RQ5:

RQ5. How do machine learning techniques that combine the warnings of
different static analysis tools perform in the context of code smell
detection?

The analyses defined so far could help understand how static analysis warn-
ings enable the identification of code smells. Yet, it is important to remark that
the research on machine learning for code smell detection has been vibrant over
the last years [9] and, as a matter of fact, a number of researchers has been
working on the optimization of machine learning pipelines with the goal of
improving the code smell detection capabilities. We took into account this as-
pect when defining the third part of our investigation. The last part of the
empirical study consisted of the definition of the last three research questions.

First, we compared the best machine learner coming from the previous
study, namely the one that combines the static analysis warnings coming from
different tools, with a machine learner that exploits structural code metrics,
namely a state of the art solution that has been used multiple times in the
past [9]. This led to the formulation of our RQ6:

RQ6. How does the combined machine learner work when compared to
an existing, code metrics-based approach for code smell detection?

Afterwards, we proceeded with a complementarity analysis involving the
two techniques (i.e., the combined machine learner and the metrics-based ap-
proach for code smell detection) in order to understand to what extent the

On Static Analysis Tools and Code Smell Prediction 9

models built on two different sets of metrics could identify identify different
code smell instances. In case of a positive answer, better performance could
be achieved by combining these two sets of metrics together. In this regard,
we asked the following research question:

RQ7. What is the orthogonality among the combined machine learner
and the metrics-based approach for code smell detection?

Finally, after we have studied the complementarity between the two mod-
els, we evaluated an additional combination, which aimed at putting together
static analysis warnings and code metrics. Hence, we asked:

RQ8. How do machine learning techniques that combine static analysis
warnings and code metrics perform in the context of code smell
detection?

The next sections report on the data selection, collection, and analysis
procedures adopted to address our research questions.

3.1 Context of the Study

The context of the study was composed of open-source software projects, code
smells, and static analysis tools.

3.1.1 Selection of Code Smells

The exploited dataset reports code smell instances pertaining to 13 different
types. However, not all of them are suitable for a machine learning solution.
For instance, let consider the case of Class Data Should Be Private: this smell
appears when a class exposes its attributes, i.e., the attributes have a public

visibility. By definition, instances of this code smell can be effectively detected
using simpler rule-based mechanisms, as done in the past [43].

For this reason, we first filtered out the code smell types whose definitions
do not require any threshold. In addition, we filtered out method-level code
smells, e.g., Long Method. The decision was driven by three main observations.
In the first place, the vast majority of the previous papers on code smell
prediction have used a class-level granularity [9] and, therefore, our choice
allowed for a simpler interpretation and comparison of the results. Secondly,
our study focuses on the code smells perceived by developers as the most
harmful [64, 46], which are all at class-level. Thirdly, the analyses performed
in the context of our empirical study required the use of a heuristic code
smell detector (i.e., Decor [43]) that has been designed and experimentally
tested on class-level code smells. All these reasons led us to conclude that
considering method-level code smells would not be necessarily beneficial for
the paper. Nonetheless, our future research on the matter will consider the
problem of assessing the role of static analysis warnings for the detection of
method-level code smells.

Based on these considerations, we focused our study on the following seven
code smells:

10 Fabiano Pecorelli et al.

– God Class. Also known as Blob, this smell generally appears when a class
is large, poorly cohesive, and has a number of dependencies with other data
classes of the system [21].

– Spaghetti Code. Instances of this code smell arise when a class does not
properly use Object-Oriented programming principles (i.e., inheritance and
polymorphism), declares at least one long method with no parameters, and
uses instance variables [11].

– Complex Class. As the name suggests, instances of this smell affect
classes that have high values for the Weighted Methods for Class metric
[14]—which is the sum of the cyclomatic complexity [42] of all methods.
This smell may primarily make the testing of those classes harder [21].

– Inappropriate Intimacy. This code smell affects classes that use internal
fields and methods of another class, hence having a high coupling that
might deteriorate program maintainability and comprehensibility [21].

– Lazy Class. The code smell targets classes that do not have enough re-
sponsibilities within the system and that, therefore, should be removed to
reduce the overall maintainability costs [21].

– Refused Bequest. Classes that only use part of the methods and prop-
erties inherited from their parents indicate the presence of possible issues
in the hierarchy of the project [21].

– Middle Man. This smell appears when a class mostly delegates its actions
to other classes, hence creating a bottleneck for maintainability [21].

The selected code smells are those more often targeted by related re-
search [9]. They have been also connected to an increase of change- and fault-
proneness of source code [13, 28, 52] as well as maintenance effort [62]. Accord-
ing to previous work [28, 51, 72], all the code smells considered let the affected
source code be more prone to changes and faults in different manners. As an
example, Palomba et al. [51] reported that the change-proneness of classes af-
fected by the God Class smell is around 28% higher than classes not affected
by the smell, while Spaghetti Code increases the change-proneness of classes of
about 21%. Other empirical investigations provided different indications, e.g.,
Khomh et al. [26, 28] reported that 68% of the classes affected by a God Class
are also change-prone. As a matter of fact, our current body of knowledge
reports that all the code smells we considered are connected to change- and
fault-proneness, but different studies provided different estimations on the ex-
tent of such connection. In addition, these code smells are highly relevant for
developers that, indeed, often recognize them as harmful for the evolvability
of software projects [46, 64, 73].

3.1.2 Selection of Automated Static Analysis Tools

In the context of our research, we selected three well-known automated static
analysis tools such as Checkstyle, Findbugs, and PMD. We provide a brief
description of these tools in the following:

On Static Analysis Tools and Code Smell Prediction 11

– Checkstyle. Checkstyle is an open-source developer tool that evaluates
Java code according to a certain coding standard, which is configured
according to a set of “checks”. These checks are classified under 14 different
categories, are configured according to the coding standard preference, and
are grouped under two severity levels: error and warning. More information
regarding the standard checks can be found from the Checkstyle web site.2

– Findbugs. Findbugs is another commonly used static analysis tool for
evaluating Java code, more precisely Java bytecode. The analysis is based
on detecting “bug patterns”, which arise for various reasons. Such bugs are
classified under 9 different categories, and the severity of the issue is ranked
from 1-20. Rank 1-4 is the scariest group, rank 5-9 is the scary group, rank
10-14 is the troubling group, and rank 15-20 is the concern group.3

– PMD. PMD is an open-source tool that provides different standard rule
sets for major languages, which can be customized by the users, if nec-
essary. PMD categorizes the rules according to five priority levels (from
P1 “Change absolutely required” to P5 “Change highly optional”). Rule
priority guidelines for default and custom-made rules can be found in the
PMD project documentation.4

The selection of these tools was driven by recent findings reporting that
these are among the automated static analysis tools more employed in practice
by developers [33, 67, 68]. In particular, the most recent of these papers [68]
reported that Checkstyle, PMD, and FindBugs are actually the tools that
practitioners use more when developing in Java, along with SonarQube. The
selection was therefore based on these observations. In this respect, it is also
worth remarking that we originally included SonarQube as well. However,
we had to exclude it because it failed on all the projects considered in our
study (see Section 3.1.3).

Table 1 Descriptive statistics about the number of code smell instances.

Code Smell Min. Median Mean Max. Tot.
God Class 0.00 4.00 6.19 23.00 412
Complex Class 0.00 2.00 4.27 16.00 301
Spaghetti Code 0.00 11.00 12.40 32.00 773
Inappropriate Intimacy 0.00 2.00 3.03 10.00 206
Lazy Class 0.00 1.00 1.95 11.00 141
Middle Man 0.00 1.00 1.11 6.00 84
Refused Bequest 0.00 7.00 7.35 17.00 500

2https://checkstyle.sourceforge.io
3http://findbugs.sourceforge.net/findbugs2.html
4https://pmd.github.io/latest/

12 Fabiano Pecorelli et al.

3.1.3 Selection of Software Projects

To address the research goals and assess the capabilities of the machine learn-
ing techniques for code smell detection, we needed to rely on a dataset report-
ing actual code smell instances. Most previous studies [9] focused on datasets
collected using automated mechanisms, e.g., executing multiple detectors at
the same time to consider the instances detected by all of them as actual
code smells. Nonetheless, it has been shown that the performance of machine
learning-based code smell detectors might be biased by the approximations
done, other than by the false positive instances detected when building the
ground truth of code smells [18]. In this paper, we took advantage of these
latter findings and preferred to rely on a manually-labeled dataset containing
actual code smell instances. Of course, this choice might have had an impact
on the size of the empirical study since there exist only a few datasets of
manually-labeled code smells [9]. Yet, we were still convinced to opt for this
solution, as this was the most appropriate choice to do in order to have reliable
results. Indeed, a dataset of real smell instances allowed us to provide reliable
results on the performance capabilities of the experimented models and, at the
same time, to present a representative case of a real scenario where the code
smells arise in similar amounts as in our study [51].

From a technical viewpoint, the selection of projects was driven by the
above requirement. We exploited a publicly available dataset of code smells
developed in previous research [48, 51]: this provides a list of 17,350 manually-
verified instances of 13 code smell types pertaining to 395 releases of 30 open
source systems. Given this initial dataset, we fixed two constraints that the
projects to consider had to satisfy. First, the projects had to contain data for
the code smells selected in our investigation (see Section 3.1.1). Secondly, we
required them to be successfully built so that they could be later analyzed
by the selected static analysis tools (see Section 3.1.2). These two constraints
were satisfied in 25 releases of the 5 open-source projects reported in Table 2
along their main characteristics.

Table 2 Software systems considered in the project.

Project Description # Classes # Methods
Apache Ant Build system 1,218 11,919
Apache Cassandra Database Management

System
727 7,901

Eclipse JDT Integrated Development
Environment

5,736 51,008

HSQLDB HyperSQL Database En-
gine

601 11,016

Apache Xerces XML Parser 542 6,126

For the sake of completeness, it is worth reporting that most of the excluded
releases/projects were due to build issues, e.g., dependency resolution problems

On Static Analysis Tools and Code Smell Prediction 13

[66]. This possibly remarks the need for additional public code smell datasets
composed of projects that can be analyzed through static or dynamic tools.

3.2 Data Collection

The data collection phase aimed at gathering information related to depen-
dent and independent variables of our study. These concern the labeling of
code smell instances, namely the identification of real code smells affecting
the considered systems, and the collection of static analysis warnings from the
selected analyzer, which will represent the features to be used in the machine
learners designed in the empirical study.

3.2.1 Collecting information on actual code smell instances

This stage consisted of identifying real code smells in the considered software
projects. The data collection, in this case, was inherited by the dataset ex-
ploited. While some previous studies relied on automated mechanisms for this
step, e.g., by using metric-based detectors [8, 26, 39], recent findings showed
that such a procedure could threaten the reliability of the dependent vari-
able and, as a consequence, of the entire machine learning model [17]. Hence,
in our study we preferred a different solution, namely considering manually-
validated code smell instances. For all the systems considered, the publicly
available dataset exploited in the empirical study report actual code smell in-
stances [48, 51] and has been used in recent studies evaluating the performance
of machine learning models for code smell detection [52, 55, 56]. For each code
smell, Table 1 reports the distribution of the code smells in the dataset.

3.2.2 Collecting static analysis tool warnings

This step aimed at collecting the data of the independent variables used in
our study. Each tool required a different process to collect such data:

– Checkstyle. The jar file for the Checkstyle analysis was downloaded
directly from the Checkstyle’s website5 in order to engage the analysis
from the command line. The version of the executable jar file used was
the checkstyle-8.30-all.jar. In addition to downloading the jar exe-
cutable, Checkstyle offers two different types of rule sets for the anal-
ysis. For each of the rule sets, the configuration file was downloaded di-
rectly from Checkstyle’s guidelines.6 In order to start the analysis, the
checkstyle-8.30-all.jar and the configuration file in question were
saved in the directory where all the projects resided.

5 https://checkstyle.org/\#Download
6https://github.com/checkstyle/checkstyle/tree/master/src/main/resources

14 Fabiano Pecorelli et al.

– Findbugs. FindBugs 3.0.1 was installed by running the brew install

findbugs in the command line. Once installed, the GUI was then engaged
by writing spotbugs. From the GUI, the analysis was executed through
File → New Project . The classpath for the analysis was identified to be
the location of the project directory. Moreover, the source directories were
identified to be the project jar executable. Once the class path and source
directories were identified, the analysis was engaged by clicking Analyze
in the GUI. Once the analysis finished, the results were saved through
File → Save as using the XML file format. The main specifications were
the ”Classpath for analysis (jar, ear, war, zip, or directory)” and ”Source
directories (optional; used when browsing found bugs)” where the project
directory and project jar file were added.

– PMD. PMD 6.23.0 was downloaded from GitHub7 as a zip file. After un-
zipping, the analysis was engaged by identifying several parameters: project
directory, export file format, rule set, and export file name. In addition to
downloading the zip file, PMD offers 32 different types of rule sets for
Java.8 All 32 rule sets were used during the configuration of the analysis.

Using these procedures, we ran the three static analysis tools on the con-
sidered software systems. At the end of the analysis, these tools extracted a
total of 60,904, 4,707, and 179,020 warnings for Checkstyle, FindBugs, and
PMD, respectively.

3.3 Data analysis

In this section, we report the methodological steps conducted to address our
research questions.

3.3.1 RQ1. Distribution analysis.

To address the first research question, we first showed boxplots depicting the
distribution of the metrics and smells. Then, we computed the Mann-Whitney
and Cliff’s Delta tests to verify the statistical significance of the observed dif-
ferences and their effect size. With respect to other possible analyses methods
(e.g., correlation), studying the distribution of warnings into the smelly and
non-smelly classes not only allowed us to identify the warning types that are
more related to code smells, but also to quantify the extent of the difference
between the number of warnings contained in smelly and non-smelly classes.

7https://github.com/pmd/pmd/releases/download/pmd_releases\%2F6.23.0/

pmd-bin-6.23.0.zip
8https://github.com/pmd/pmd/tree/master/pmd-java/src/main/resources/

rulesets/java

On Static Analysis Tools and Code Smell Prediction 15

3.3.2 RQ2 Contribution of static analysis warnings in code smell prediction.

In this RQ, we assessed the extent to which the various warning categories
of the considered static analysis tools can potentially impact the performance
of a machine learning-based code smell detector. To this aim, we employed
an information gain measure [60], and particularly the Gain Ratio Feature
Evaluation technique, to establish a ranking of the features according to their
importance for the predictions done by the different models. This analysis
method turned to be particularly useful in our case, since it allowed us to
precisely quantify the potential predictive power of each warning category for
the prediction of code smells. Given a set of features F = {f1, ..., fn} belonging
to the model M , the Gain Ratio Feature Evaluation computes the difference,
in terms of Shannon entropy, between the model including the feature fi and
the model that does not include fi as independent variable. The higher the
difference obtained by a feature fi, the higher its value for the model. The
outcome is represented by a ranked list, where the features providing the
highest gain are put at the top. This ranking was used to address RQ2.

3.3.3 RQ3. The role of static analysis warnings in code smell prediction.

Once we had investigated which warning categories relate the most to the
presence of code smells, in RQ3 we proceeded with the definition of machine
learning models. Specifically, we defined a feature for each warning type raised
by the tools, where each feature contained the number of violations of that
type identified in a class. For instance, suppose that for a class Ci Check-
style identifies seven violations to the warning type called “Bad Practices”:
the machine learner is fed with the integer value “7” for the feature “Bad
Practices” computed on the class Ci.

The dependent variable was, instead, given by the presence/absence of a
certain code smell. This implied the construction of seven models for each
tool, i.e., for each static analysis tool considered, we built a model that used
its warnings types as features to predict the presence of God Class, Spaghetti
Code, Complex Class, Inappropriate Intimacy, Lazy Class, Refused Bequest,
and Middle Man. Overall, this design led to the creation of 21 models per
project, i.e., one for each code smell/static analysis tool pair. For the sake of
clarity, it is worth remarking that we considered each release of the projects in
the dataset as an independent project. This choice was taken after an in-depth
investigation of the differences among the releases available: we indeed discov-
ered that the releases that met our filtering criteria (see Section 3.1.3) were too
far in time from each other, making other strategies unfeasible/unreliable—as
an example, the excessive distance among releases made not feasible a release-
by-release methodology where subsequent releases are considered following a
time-sensitive data analysis [53, 65].

As for the supervised learning algorithm, the literature in the field still
misses a comprehensive analysis of which algorithm works better in the context
of code smell detection [9]. For this reason, we experimented with multiple

16 Fabiano Pecorelli et al.

classifiers such as J48, Random Forest, Naive Bayes, Support Vector Machine,
and JRip. When training these algorithms, we followed the recommendations
provided by previous research [9, 65] to define a pipeline dealing with some
common issues in machine learning modeling. In particular, we exploited the
output of the Gain Information algorithm—used in the context of RQ2—
to discard irrelevant features that could bias the interpretation of the models
[65]: we did that by excluding the features not providing any information gain.
We also configured the hyper-parameters of the considered machine learners
using the MultiSearch algorithm [74], which implements a multidimensional
search of the hyper-parameter space to identify the best configuration of the
model based on the input data. Finally, we considered the problem of data
balancing: it has been recently explored in the context of code smell prediction
[56] and the reported findings showed that data balancing may or may not
be useful to improve the performance of a model. Hence, before deciding on
whether to apply data balancing, we benchmarked (i) Class Balancer, which
is an oversampling approach (ii) Resample, an undersampling method (iii)
Smote, an approach including synthetic instances to oversample the minority
class, and (iv) NoBalance, namely the application of no balancing methods.

After training the models, we proceeded with the evaluation of their per-
formance. We applied a 10-fold cross-validation, as it allows to verify multiple
times the performance of a machine learning model built using various training
data against unseen data. With this strategy, the dataset (including the train-
ing set) was divided in 10 parts respecting the proportion between smelly and
non-smelly elements. Then, we trained for ten times the models using 9/10 of
the data, retaining the remaining fold for testing purpose—in this way, we al-
lowed each fold to be the test set exactly once. For each test fold, we evaluated
the models by computing a number of performance metrics, such as precision,
recall, F-Measure, AUC-ROC, and Matthews Correlation Coefficient (MCC).
Finally, with the aim of drawing statistically significant conclusions, we applied
the post-hoc Nemenyi test [44] on the distributions of MCC values achieved
by the experimented machine learners, setting the significance level to 0.05.

3.3.4 RQ4. Orthogonality between the three single-tool Prediction Models.

When addressing this research question, we were interested in understanding
whether the different machine learners experimented in the context of RQ3

were able to detect code smell instances that are not detected also by other
techniques. If this was the case, then it meant that different automated static
analysis tools would have had the potential to predict the smelliness of classes
differently, hence possibly enabling the definition of a combined machine learn-
ing mechanism that it could have further improved the code smell detection
capabilities. In other terms, the analysis aimed at understanding how many
true positives can be identified by a specific model alone and how many true
positives can be correctly identified by multiple models. To this purpose, for
each code smell type, we compared the sets of correctly detected instances by

On Static Analysis Tools and Code Smell Prediction 17

a technique mi with those identified by an alternative technique mj using the
following overlap metrics [45]:

correctmi∩mj =
|correctmi

∩ correctmj
|

|correctmi
∪ correctmj

|
%

correctmi\mj
=
|correctmi

\ correctmj
|

|correctmi
∪ correctmj

|
%

where correctmi
represents the set of correct code smells detected by the ap-

proach mi, correctmi∩mj
measures the overlap between the set of true code

smells detected by both approaches mi and mj , and correctmi\mj
appraises

the true smells detected by mi only and missed by mj . The latter metric
provides an indication of how a code smell detection technique contributes to
enriching the set of correct code smells identified by another approach.

We also considered an additional orthogonality metric, which computed the
percentage of code smell instances correctly identified only by the prediction
model mi. In this way, we could measure the extent to which the warning
types of a specific static analysis tool contributed to the identification of all
correct instances identified. Specifically, we computed:

correctmi\(mj∪mk) =
|correctmi

\ (correctmj
∪ correctmk

)|
|correctmi

∪ correctmj
∪ correctmk

|
%

While different models can identify different correct code smell instances,
they can also identify different false positives. This means that the complemen-
tarity of the models does not necessarily mean that their combination would
result in a better model. In the next Section we show how to build a combined
model and compare it with the individual ones.

3.3.5 RQ5. Toward a Combination of Automated Static Analysis Tools for
Code Smell Prediction.

In this research question, we took into account the possibility to devise a
combined model that mixes together the outputs of different static analysis
tools.

Starting from all warning types of the various tools, we have proceeded
as follows. In the first place, we built a new dataset where, for all classes of
the systems considered, we reported all the warnings raised by all tools. This
step led to the creation of unique dataset that combined all the information
mined in the context of our previous research questions. In the second place,
we have re-run the Gain Ratio Feature Evaluation [60] in order to globally
rank the features and discard those that, in such a new combined dataset, did
not provide any information gain.

After discarding the irrelevant features, we have followed the same steps as
RQ3 with the aim of conducting a fair comparison of the combined model with
the individual ones previously experimented. As such, we trained the model

18 Fabiano Pecorelli et al.

using multiple classifiers appropriately configured using the MultiSearch al-
gorithm [74] and considering the problem of data balancing [56]. Afterwards, to
verify the performance of the combined model, we adopted the same validation
strategy as RQ3 and compared it with the values of F-Measure, AUC-ROC,
and Matthews Correlation Coefficient obtained by the individual models. Fi-
nally, we used the Nemenyi test [44] for statistical significance.

3.3.6 RQ6. Comparison with a baseline machine learner.

To address RQ6, we had to first select an existing solution to compare
with. Most of the previous studies [2, 9, 25] experimented with various ma-
chine learning techniques, yet they all employed code metrics as predictors. As
an example, Maiga et al. [41] characterized God Class instances by means of
Object-Oriented metrics. Similarly, other researchers have attempted to ver-
ify how different machine learning algorithms work in the task of code smell
classification without focusing on the specific features to use for this purpose
[9]. Hence, we decided to devise a baseline machine learning technique that
uses code metrics as predictors. In this respect, we computed the entire set of
metrics proposed by Chidamber and Kemerer’s suite [14] with our own tool
and use them as features.

After computing the code metrics, we followed exactly the same method-
ological procedure used in the context of RQ3 and RQ5. As such, the baseline
machine learner aimed at predicting the presence/absence of code smells. Also
in this case, we experimented with various machine learning algorithms, find-
ing Random Forest to be the best one. When training the baseline, we took
care of possible multi-collinearity by excluding the code metrics providing no
information gain, other than tuning the hyper-parameters by means of the
MultiSearch algorithm [74]. In terms of data balancing, we verified what
was the best possible configuration, benchmarking Class Balancer, Resample,
Smote, and NoBalance: Smote was found to be the best option.

We applied a 10-fold cross validation on the dataset, so that we could have
a fair comparison with the approach devised in RQ5—note that we did not
consider a full comparison with the individual models experimented in RQ3

since these were shown already to be less performing. The accuracy of the
baseline was assessed through F-Measure, AUC-ROC, and MCC. Finally, we
executed the post-hoc Nemenyi test [44] on the distributions of MCC values
achieved by the baseline and the combined machine learner output by RQ5,
setting the significance level to 0.05.

3.3.7 RQ7. Orthogonality between the warning- and metric-based Prediction
Models.

In this research question we performed a complementarity analysis between the
warning- and the metric-based Prediction Models. In order to perform such
a complementarity analysis, we followed the same methodology applyed for

On Static Analysis Tools and Code Smell Prediction 19

RQ4. In particular, for each actual smelly instance, we computed the overlap
metrics described in Section 3.3.4, i.e., correctmi∩mj and correctmi\mj

.

3.3.8 RQ8. Combining static analysis warnings and code metrics.

To study the performance of a machine learner that exploits both static anal-
ysis warnings and code metrics, we have proceeded in a similar manner as
the other research questions, After combining all the metrics experimented so
far in a unique dataset, we re-run the Gain Ratio Feature Evaluation [60] to
understand the contribution provided by each of those metrics. As previously
done, we discarded the ones whose contribution was null. Afterwards, we fol-
lowed the same steps as RQ5 and compared the performance of the combined
model to the previously built models using F-Measure, AUC-ROC, and MCC,
other than the Nemenyi test [44] for statistical significance.

4 Analysis of the Results

In the following, we discuss the results achieved when addressing our research
questions. For the sake of understandability, we report the discussion by RQ.

Fig. 1 Boxplots reporting warnings distributions in smelly/non smelly classes for the seven
code smells considered.

4.1 RQ1. Distribution analysis.

Figure 1 shows boxplots of the distributions of warning categories in smelly
and non-smelly classes for the seven code smell types considered in the study.

20 Fabiano Pecorelli et al.

Table 3 Mann Whitney and Cliff’s Delta Statistical Test Results. We use N, S, M, and L
to indicate negligible, small, medium and large effect size respectively. Significant p-values
and δ values are reported in bold-face.

God Class Complex Class Spaghetti Code Inapp. Intimacy Lazy Class Middle Man Refused Bequest
Tool Warning p-value δ p-value δ p-value δ p-value δ p-value δ p-value δ p-value δ

Checkstyle

regexp 3.2e-68 M 9.9e-66 M 4.1e-02 N 3.1e-04 N 2.5e-01 N 8.7e-08 S 9.9e-06 N
checks 1.6e-86 L 1.7e-57 L 3.3e-13 N 4.2e-23 M 1.8e-08 S 1.7e-04 S 1e-15 S
whitespace 3e-93 L 1.6e-69 L 2.6e-17 S 1e-25 M 8.5e-01 N 4.6e-05 S 1.1e-15 S
blocks 1.5e-100 L 3.8e-68 L 1.2e-20 S 1.6e-36 M 7.7e-01 N 3.3e-18 L 1.2e-18 S
sizes 3.2e-77 L 9.7e-50 L 1.7e-04 N 4.9e-23 M 8.7e-01 N 7.4e-01 N 6.4e-02 N
javadoc 2.2e-74 L 3.8e-46 L 1.4e-10 N 3.8e-23 M 7e-04 S 1e-09 M 2.2e-10 S
indentation 3.1e-60 M 1e-38 M 1.1e-12 N 2.6e-15 S 5.2e-03 N 1.7e-04 S 2.1e-04 N
naming 1.4e-128 L 2.8e-78 L 4.8e-39 S 2.3e-29 M 3.7e-02 N 9.9e-01 N 2.8e-11 N
imports 1.1e-40 M 5.7e-27 M 3.3e-02 N 4.2e-22 M 7.5e-02 N 5.8e-01 N 4.6e-06 N
coding 2.2e-114 L 2.3e-77 L 2e-43 S 1.2e-35 M 1.7e-01 N 1.8e-01 N 5.8e-08 N
design 1.2e-68 M 1.5e-39 M 2.5e-11 N 1e-23 M 3.8e-03 N 5.8e-12 M 3.4e-05 N
modifier 6e-136 M 4.9e-103 M 1.9e-17 N 1.3e-47 S 8.1e-01 N 3.4e-01 N 1.5e-01 N

Findbugs

style 1.1e-63 S 7.9e-20 N 2.2e-120 S 4.2e-19 N 4.9e-01 N 7.3e-02 N 9.2e-07 N
correctness 2e-07 N 1.7e-02 N 4.1e-25 N 4.7e-02 N 6.1e-01 N 5.6e-01 N 1.3e-01 N
performance 1.2e-13 N 2.5e-19 N 2.5e-23 N 1.5e-37 N 9.6e-01 N 2.8e-01 N 8.2e-07 N
malicious code 1.1e-04 N 1.3e-01 N 1.2e-04 N 8.8e-12 N 5.2e-01 N 3.1e-01 N 4.2e-01 N
bad practice 7.3e-23 N 5.6e-03 N 2.5e-112 N 2.4e-36 S 1.3e-01 N 3.4e-08 N 8.5e-03 N
i18n 3.5e-10 N 4e-03 N 4e-101 N 8.3e-08 N 4.1e-01 N 2.6e-01 N 1.8e-01 N
mt correctness 2.1e-10 N 3e-01 N 2.9e-21 N 4.4e-26 N 5e-01 N 6.1e-01 N 1.9e-01 N
experimental 5.5e-01 N 6.2e-01 N 6.4e-18 N 6.6e-01 N 7.4e-01 N 8e-01 N 5.2e-01 N
security 7.7e-01 N 8.1e-01 N 1.1e-79 N 8.3e-01 N 8.7e-01 N 9e-01 N 7.5e-01 N

PMD

documentation 4.1e-233 L 2.9e-145 L 1.9e-190 L 7.7e-70 L 2.9e-09 S 3.2e-03 S 4.6e-31 S
code style 6.5e-233 L 2e-160 L 1.5e-302 L 8.3e-73 L 1.3e-08 S 2.8e-05 S 3.3e-79 L
best practices 3.6e-166 L 3.1e-120 L 1.3e-210 L 2e-43 L 9.9e-03 N 8.9e-01 N 1.2e-66 M
design 1.6e-236 L 1.1e-164 L 0e+00 L 1.8e-62 L 1.3e-06 S 7.4e-01 N 2e-63 M
error prone 4.2e-239 L 1.9e-162 L 0e+00 L 2.1e-59 L 1.3e-04 S 1.7e-01 N 3.9e-67 M
multithreading 3.7e-177 M 5.3e-109 M 4.2e-93 S 1.3e-22 S 8.9e-01 N 3.6e-01 N 1.3e-16 N
performance 1.2e-285 L 4.7e-204 L 0e+00 L 2.2e-95 L 5.3e-08 S 6.8e-01 N 7.5e-62 M

Table 4 Information Gain of our independent variables for each static analysis tool.

Checkstyle FindBugs PMD
Code Smell Metric Mean Metric Mean Metric Mean

God Class
Indentation 0.03 Style 0.02 Code Style 0.03
Blocks 0.03 Bad Practice 0.01 Documentation 0.03
Sizes 0.03 I18N 0.01 Error Prone 0.03

Complex Class
Indentation 0.04 Style 0.02 Code Style 0.03
Blocks 0.04 Security 0.01 Design 0.03
Sizes 0.03 Malicious Code 0.01 Error Prone 0.03

Spaghetti
Code

Indentation 0.03 I18N 0.01 Error Prone 0.03
Blocks 0.02 Security 0.01 Code Style 0.03
Coding 0.02 Correctness 0.01 Design 0.03

Inappropriate
Intimacy

Whitespace 0.01 Bad Practice 0.02 Code Style 0.01
Indentation 0.01 Style 0.01 Error Prone 0.01
Javadoc 0.01 Correctness 0.01 Design 0.01

Lazy Class
Javadoc 0.01 Security 0.01 Code Style 0.01
Sizes 0.01 Malicious Code 0.01 Documentation 0.01
Indentation 0.01 Correctness 0.01 Design 0.01

Middle Man
Indentation 0.01 Security 0.01 Error Prone 0.01
Design 0.01 Malicious Code 0.01 Documentation 0.01
Checks 0.01 Correctness 0.01 Code Style 0.01

Refused
Bequest

Indentation 0.01 Style 0.01 Code Style 0.01
Checks 0.01 Security 0.01 Error Prone 0.01
Design 0.01 Malicious Code 0.01 Design 0.01

Regardless of the code smell and the warning category considered, the dis-
tributions always contain higher values for smelly cases, i.e., smelly classes
are more likely to contain a higher number of warnings. The only exception
is represented by Lazy Class, in which the greater number of warnings arises
in classes that are not affected by this code smell. Although this result could
sound strange, it is fair to remember that Lazy Class refers to very short classes
that basically have no responsibility. Therefore, it is reasonable to think that
lazy classes are associated with few or no warnings. Table 3 reports results
for the Mann-Whitney and Cliff’s Delta tests. Results indicate that for most

On Static Analysis Tools and Code Smell Prediction 21

of the warning categories, there is a statistically significant difference between
the two distributions, thus indicating that those categories represent relevant
features to discriminate smelly and non-smelly instances. Turning to the anal-
ysis of the categories related to each individual tool, we can see that PMD
yields the most relevant warnings. Indeed, except for Middle Man and Lazy
Class, all the warning categories belonging to this tool resulted to be relevant.
Similarly, Checkstyle’s warning categories are very relevant for six out of the
seven code smells considered. Finally, the warnings generated by Findbugs are
those showing the smaller differences between the two considered distributions.

Finding 1. Results of our distribution analysis indicate that warnings
generated by Automatic Static Analysis Tools could be good indicator
of the presence of code smell instances. While Checkstyle and PMD
generate a wide set of significant warnings, Findbugs’s warnings seem
to be less correlated with code smells.

4.2 RQ2. Contribution of static analysis warnings in code smell prediction.

Table 4 reports the mean information gain values obtained by the metrics
composing the 21 models built in our study. For the sake of readability, we just
reported the three most relevant warning categories for each model, i.e., one
for each tool-smell combination—the interested reader can find the complete
results as part of our online appendix [58].

Looking at the achieved results, the first thing to notice is that, depending
on the code smell type, the warning types could have different weights: this
practically means that a machine learner for code smell identification should
exploit different features depending on the target code smell rather than rely
on a unique set of metrics to detect them all. As an example, the Indentation
type of Checkstyle provides different information gain based on the specific
code smell type. This seems to suggest that not all warnings would have the
same impact on the performance of various code smell detectors.

When analyzing the most powerful features of Checkstyle and PMD, we
could notice that features related to source code readability are constantly at
the top of the ranked list for all the considered code smells. This is, for instance,
the case of the Indentation warnings given by Checkstyle or the Code Style
metrics highlighted by PMD. The most relevant warnings also seem to be
strongly related to specific code smells: as an example, the presence of a high
number of blocks having a large size might strongly affect the likelihood to
have a God Class or or a Complex Class smell; similarly, design-related issues
are the most characterizing aspects of a Spaghetti Code or a Middle Man. In
other words, from this analysis, we could delineate a relation between the most
relevant warnings highlighted by Checkstyle and PMD and the specific code
smells considered in this paper.

22 Fabiano Pecorelli et al.

A different discussion should be done for FindBugs: in this case, the most
powerful metrics mostly relate to Performance or Security, which are supposed
to cover different code issues than code smells. As such, we expect this static
analysis tool to have lower performance when used for code smell detection.

Finally, it is worth noting that the information gain of the considered
features seems to be generally low. On the one hand, this may potentially
imply a low capability of the features when employed within a machine learning
model. On the other hand, it may also be the case that such a little information
would already be enough to characterize and predict the existence of code smell
instances. The next sections address this point further.

Finding 2. Generally, the considered features provide low information
gain. The most relevant features are related to readability issues when
relying on the models built on top of Checkstyle and PMD (e.g.,
Indentation, Code Style). As for FindBugs, the most relevant features
relate to other non functional aspects, e.g., Performance, Security.

Table 5 Aggregate results reporting the performance of the models built with the warning
generated by the three static automatic tools.

Checkstyle FindBugs PMD
Prec. Recall FM MCC Prec. Recall FM MCC Prec. Recall FM MCC

God Class 0.01 0.62 0.02 0.04 0.01 0.25 0.01 0.01 0.43 0.52 0.47 0.47
Complex Class 0.01 0.48 0.01 0.02 0.00 0.22 0.01 0.00 0.28 0.35 0.31 0.31
Spaghetti Code 0.02 0.43 0.03 0.05 0.01 0.19 0.02 0.00 0.26 0.22 0.24 0.23
Inappropriate Intimacy 0.01 0.44 0.01 0.03 0.00 0.31 0.00 -0.01 0.08 0.17 0.11 0.11
Lazy Class 0.01 0.13 0.01 0.02 0.00 0.63 0.00 -0.01 0.04 0.11 0.06 0.06
Middle Man 0.00 0.15 0.00 -0.02 0.00 0.66 0.00 0.01 0.08 0.03 0.04 0.05
Refused Bequest 0.01 0.38 0.01 0.00 0.01 0.50 0.01 0.00 0.27 0.14 0.18 0.19

4.3 RQ3. The role of static analysis warnings in code smell prediction.

Figure 2 reports the performance capabilities in terms of MCC of the models
built using the warnings given by Checkstyle, FindBugs, and PMD, re-
spectively. In this section, we only discuss the overall results obtained with the
best configuration of the models, namely the one considering Random Forest
as classifier and Class Balancer as data balancing algorithm. The results for
the other models are available in our online appendix [58].

We can immediately point out that the models built using the warnings
of static analysis tools have very low performance. In almost all cases, in-
deed, the MCCs show median values that are very close to zero, indicating
a very low, if not even null correlation between the set of detected and the
set of actual smelly instances. This result is in line with previous studies on
the application of machine learning for code smell detection [18, 55]. As an
example, Pecorelli et al. [55] reported that models built using code metrics of
the Chidamber-Kemerer suite [14] work worst than a constant classifier that

On Static Analysis Tools and Code Smell Prediction 23

0.0

0.2

0.4

0.6

Checkstyle FindBugs PMD

M
C

C
 −

 G
od

C
la

ss

0.0

0.2

0.4

0.6

Checkstyle FindBugs PMD

M
C

C
 −

 C
om

pl
ex

C
la

ss

0.0

0.2

0.4

0.6

Checkstyle FindBugs PMD

M
C

C
 −

 S
pa

gh
et

tiC
od

e

0.0

0.1

0.2

0.3

Checkstyle FindBugs PMD

M
C

C
 −

 L
az

yC
la

ss

0.0

0.1

0.2

0.3

0.4

Checkstyle FindBugs PMD

M
C

C
 −

 In
ap

pr
op

ria
te

In
tim

ac
y

0.0

0.2

0.4

0.6

Checkstyle FindBugs PMD

M
C

C
 −

 R
ef

us
ed

B
eq

ue
st

−0.075

−0.050

−0.025

0.000

Checkstyle FindBugs PMD

M
C

C
 −

 M
id

dl
eM

an

Fig. 2 Boxplots representing the MCC values obtained by Random Forest trained on static
analysis warnings for code smells detection.

always considers an instance as non-smelly. Perhaps more interestingly, our
findings contradict the preliminary insights we obtained on the capabilities
of static analysis warnings as features for code smell detection [36]: indeed,
when replicating the study on a larger scale, we could not confirm the fairly
high performance previously achieved, highlighting how replications in soft-
ware engineering research represent a precious method to corroborate (or not)
analyses done under specific conditions that can affect generalizability [12].

The reasons behind the low MCC values could be various. This coefficient
is computed by combining true positives, true negatives, false positives, and
false negatives altogether; as such, having a clear understanding of the factors
impacting those values is not trivial. In an effort of determining these reasons,
Table 4 provides a more detailed overview of the performance of the models
for each of the considered tools and code smells.

The first aspect to consider is that, when considering Checkstyle and
FindBugs, the low performance could be due to the high false-positive rate.
Indeed, despite the moderately high recall, the results are negatively influenced

24 Fabiano Pecorelli et al.

M
C

C
 −

 G
od

C
la

ss

C
he

ck
st

yl
e

−
 1

.8
6

F
in

db
ug

s
−

 1
.8

6

P
M

D
 −

 2
.2

9

1.6

1.8

2.0

2.2

2.4

M
C

C
 −

 C
om

pl
ex

C
la

ss

C
he

ck
st

yl
e

−
 1

.9
9

F
in

db
ug

s
−

 1
.9

9

P
M

D
 −

 2
.0

2

1.8

1.9

2.0

2.1

2.2

M
C

C
 −

 S
pa

gh
et

tiC
od

e

C
he

ck
st

yl
e

−
 1

.9
6

F
in

db
ug

s
−

 1
.9

6

P
M

D
 −

 2
.0

7

1.8

1.9

2.0

2.1

2.2

2.3
M

C
C

 −
 L

az
yC

la
ss

P
M

D
 −

 1
.7

0

C
he

ck
st

yl
e

−
 2

.1
5

F
in

db
ug

s
−

 2
.1

5

1.4

1.6

1.8

2.0

2.2

2.4

M
C

C
 −

 In
ap

pr
op

ria
te

In
tim

ac
y

P
M

D
 −

 1
.7

4

C
he

ck
st

yl
e

−
 2

.1
3

F
in

db
ug

s
−

 2
.1

3

1.6

1.8

2.0

2.2

2.4

M
C

C
 −

 R
ef

us
ed

B
eq

ue
st

C
he

ck
st

yl
e

−
 1

.9
1

F
in

db
ug

s
−

 1
.9

1

P
M

D
 −

 2
.1

9

1.6

1.8

2.0

2.2

2.4

M
C

C
 −

 M
id

dl
eM

an

C
he

ck
st

yl
e

−
 1

.9
3

F
in

db
ug

s
−

 1
.9

3

P
M

D
 −

 2
.1

4

1.6

1.8

2.0

2.2

2.4

Fig. 3 Plots representing the results of Nemenyi test for statistical significance between the
MCC values obtained by Random Forest trained on static analysis warnings for code smells
detection.

by the very low precision that is always close to zero. A different conclusion
must be drawn for PMD. The results show similar precision and recall values
when considering the code smells individually, but these values are higher or
lower depending on the specific code smell type. In other words, our results
indicate that the models built using the warnings provided by this tool could
achieve higher or lower performance, depending on the smell considered—
hence, the capabilities of these models cannot be generalized to all code smells.

Another important aspect to take into account is the different behaviour of
the three models with respect to the code smell to detect. While Checkstyle
and PMD achieve better performance in detecting God Class, Complex Class,
and Spaghetti Code, FindBugs gives its best in the detection of Lazy Class,
Middle Man, and Refused Bequest.

Figure 3 confirms the discussion above. Indeed, by analyzing the statisti-
cal difference between models with respect to code smells, we can notice that
PMD performance are statistically better than the other two models when
detecting God Class instances. In the cases of Lazy Class and Inappropri-

On Static Analysis Tools and Code Smell Prediction 25

ate Intimacy code smells, instead, models built with warning generated by
Checkstyle, and FindBugs performs significantly better than those relying
on PMD warnings.

Nonetheless, despite the negative results achieved so far, it is worth reflect-
ing on two specific aspects coming from our analysis. On the one hand, for each
code smell there is at least one tool whose warnings are able to catch a good
number of smelly instances (i.e., recall ≈ 50%). On the other hand, different
warning categories achieve higher performance on different sets of code smells.
Based on these two considerations, we conjectured that higher performance
could be potentially achieved when combining the warnings generated by the
three static analysis tools. Next paragraphs address this point deeply.

Finding 3. Machine-Learning based code smell detection approaches
using static analysis warning as independent variables generally achieve
low performance. Specifically, in many cases, those approaches achieve a
good recall but a very bad precision, indicating a high false-positive rate.
Differences in the performance achieved by the three warning categories
with respect to the code smell analyzed could indicate that a combination
of these categories could help achieving higher performance.

Table 6 Overlap analysis between Checkstyle and Findbugs.

Code Smell CS ∩ FB CS \ FB FB \ CS
God Class 7% 47% 46%
Complex Class 11% 37% 52%
Spaghetti Code 5% 70% 25%
Inappropriate Intimacy 8% 23% 69%
Lazy Class 0% 7% 93%
Middle Man 8% 0% 92%
Refused Bequest 21% 25% 54%

4.4 RQ4. Orthogonality of the Prediction Models.

In the context of the fourth research question, we sought to move toward a
combination of warning types coming from different static analysis tools for
code smell detection. Let discuss the results by analyzing Table 6, that reports
the overlap between the model using the warnings generated by Checkstyle
and the one built on the FindBugs warnings. It is interesting to observe that
there is a very high complementarity between the two models, regardless on
the code smell considered. Indeed, only a small portion of smelly instances are
correctly identified by both the models, i.e., (CS ∩ FB) ≤ 21%. Moreover,
the percentage of instances correctly classified by only one of the models is
generally high, indicating such complementarity.

26 Fabiano Pecorelli et al.

Table 7 Overlap analysis between Checkstyle and PMD.

Code Smell CS ∩ PMD CS \ PMD PMD \ CS
God Class 0% 98% 2%
Complex Class 0% 98% 2%
Spaghetti Code 2% 94% 4%
Inappropriate Intimacy 33% 60% 7%
Lazy Class 0% 100% 0%
Middle Man 0% 100% 0%
Refused Bequest 0% 100% 0%

Table 7 show the results of the overlap between the models built on Check-
style and PMD warnings. The table immediately suggests that PMD pro-
vides a very limited contribution in terms of new smelly instances discovered.
Results suggest that for all code smells, Checkstyle alone could detect al-
most the same set of smelly instances.

Table 8 Overlap analysis between Findbugs and PMD.

Code Smell FB ∩ PMD FB \ PMD PMD \ FB
God Class 1% 98% 1%
Complex Class 0% 98% 2%
Spaghetti Code 2% 87% 11%
Inappropriate Intimacy 10% 84% 6%
Lazy Class 0% 100% 0%
Middle Man 0% 100% 0%
Refused Bequest 0% 100% 0%

Table 8 provides the overlap results for FindBugs and PMD. These results
deserve a discussion similar to the previous one. Indeed, as we discussed above,
also in this case PMD does not provide an important contribution. Most of
the correctly classified instances are indeed provided by the model built only
on FindBugs warnings.

Table 9 Overlap Analysis considering each tool independently.

Code Smell CS \ (FB ∪ PMD) FB \ (CS ∪ PMD) PMD \ (CS ∪ FB) CS ∩ FB ∩ PMD
God Class 44% 56% 0% 0%
Complex Class 38% 59% 2% 0%
Spaghetti Code 74% 23% 2% 1%
Inappropriate Intimacy 40% 46% 1% 13%
Lazy Class 4% 95% 1% 0%
Middle Man 21% 79% 0% 0%
Refused Bequest 36% 62% 2% 0%

Finally, looking at the overlap results for all the three models, shown
in Table 9, we can confirm the above results. The low percentage of in-
stances that are simultaneously correctly detected as smelly by all three ap-
proaches indicates a high complementarity between the instances detected by
the three tools, i.e., different tools are able to detect different sets of smelly in-
stances. Such complementarity is an indicator that better performance could

On Static Analysis Tools and Code Smell Prediction 27

be achieved by combining the warnings generated by the three tools in a
unique, unified, detection model.

Finding 4. Machine Learning code smell detection models built on the
warning generated by different tools are highly complementary. Both
Checkstyle and FindBugs are able to identify a great number of
instances that are not detected by the other. PMD detects instances
undiscovered by the others only in a limited number of cases.

Table 10 Information Gain of our independent variables for the combined model.

Combined model
Code Smell Metric Mean

God Class
Code.Style 0.03
Documentation 0.02
Design 0.02

Complex Class
Code Style 0.03
Design 0.02
Error Prone 0.02

Spaghetti Code
Error Prone 0.03
Code Style 0.02
Design 0.02

Inappropriate Intimacy
Code Style 0.01
Whitespace 0.01
Design 0.01

Lazy Class
Javadoc 0.01
Sizes 0.01
Code Style 0.01

Middle Man
Imports 0.01
Design 0.01
Checks 0.01

Refused Bequest
Code Style 0.01
Error Prone 0.01
Documentation 0.01

Table 11 Results reporting the performance of the model built by combining the warning
generated by the three static automatic tools.

Checkstyle FindBugs PMD Combined
Prec. Recall FM MCC Prec. Recall FM MCC Prec. Recall FM MCC Prec. Recall FM MCC

God Class 0.01 0.62 0.02 0.04 0.01 0.25 0.01 0.01 0.43 0.52 0.47 0.47 0.49 0.47 0.48 0.48
Complex Class 0.01 0.48 0.01 0.02 0.00 0.22 0.01 0.00 0.28 0.35 0.31 0.31 0.34 0.34 0.34 0.34
Spaghetti Code 0.02 0.43 0.03 0.05 0.01 0.19 0.02 0.00 0.26 0.22 0.24 0.23 0.31 0.19 0.24 0.24
Inappropriate Intimacy 0.01 0.44 0.01 0.03 0.00 0.31 0.00 -0.01 0.08 0.17 0.11 0.11 0.21 0.15 0.17 0.17
Lazy Class 0.01 0.13 0.01 0.02 0.00 0.63 0.00 -0.01 0.04 0.11 0.06 0.06 0.17 0.12 0.14 0.14
Middle Man 0.00 0.15 0.00 -0.02 0.00 0.66 0.00 0.01 0.08 0.03 0.04 0.05 0.56 0.07 0.13 0.20
Refused Bequest 0.01 0.38 0.01 0.00 0.01 0.50 0.01 0.00 0.27 0.14 0.18 0.19 0.39 0.09 0.15 0.18

28 Fabiano Pecorelli et al.

0.00

0.25

0.50

0.75

Checkstyle FindBugs PMD Combined

M
C

C
 −

 G
od

C
la

ss

0.00

0.25

0.50

0.75

Checkstyle FindBugs PMD Combined

M
C

C
 −

 C
om

pl
ex

C
la

ss

0.0

0.2

0.4

0.6

0.8

Checkstyle FindBugs PMD Combined

M
C

C
 −

 S
pa

gh
et

tiC
od

e

0.0

0.2

0.4

0.6

Checkstyle FindBugs PMD Combined

M
C

C
 −

 L
az

yC
la

ss

0.0

0.2

0.4

0.6

Checkstyle FindBugs PMD Combined

M
C

C
 −

 In
ap

pr
op

ria
te

In
tim

ac
y

0.0

0.2

0.4

0.6

Checkstyle FindBugs PMD Combined

M
C

C
 −

 R
ef

us
ed

B
eq

ue
st

0.0

0.2

0.4

0.6

Checkstyle FindBugs PMD Combined

M
C

C
 −

 M
id

dl
eM

an

Fig. 4 Boxplots representing the MCC values obtained by Random Forest trained on static
analysis warnings for code smells detection.

4.5 RQ5. Toward a Combination of Automated Static Analysis Tools for
Code Smell Prediction.

In the context of this RQ, we defined and evaluated a combined model. As
explained in Section 4.2, we faced the problem by first measuring the potential
information gain by the warning types when put all together and then consid-
ering the most relevant warnings for the definition of a more effective combi-
nation. Table 10 reports the information gain values obtained by the metrics
composing the combined models. Also in this case, for the sake of readabil-
ity we only reported the three most relevant categories for each model. The
complete results can be found in our online appendix [58].

Looking at the table, the first consideration we can do is that readability-
related features remain relevant even when considering all the features to-
gether. Some examples are Code Style for God Class or Javadoc for Lazy
Class. Differently, features related to performance and security aspects, that

On Static Analysis Tools and Code Smell Prediction 29

M
C

C
 −

 G
od

C
la

ss

C
he

ck
st

yl
e

−
 1

.9
2

F
in

db
ug

s
−

 1
.9

2

P
M

D
 −

 2
.7

2

co
m

bi
ne

d
−

 3
.4

4

1.5

2.0

2.5

3.0

3.5

M
C

C
 −

 C
om

pl
ex

C
la

ss

C
he

ck
st

yl
e

−
 2

.1
3

F
in

db
ug

s
−

 2
.1

3

P
M

D
 −

 2
.2

9

co
m

bi
ne

d
−

 3
.4

4

2.0

2.5

3.0

3.5

M
C

C
 −

 S
pa

gh
et

tiC
od

e

C
he

ck
st

yl
e

−
 1

.9
8

F
in

db
ug

s
−

 1
.9

8

P
M

D
 −

 2
.2

4

co
m

bi
ne

d
−

 3
.8

0

2.0

2.5

3.0

3.5

4.0

M
C

C
 −

 L
az

yC
la

ss

P
M

D
 −

 1
.8

9

C
he

ck
st

yl
e

−
 2

.1
1

F
in

db
ug

s
−

 2
.1

1

co
m

bi
ne

d
−

 3
.8

9

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
C

C
 −

 In
ap

pr
op

ria
te

In
tim

ac
y

P
M

D
 −

 1
.7

6

C
he

ck
st

yl
e

−
 2

.1
2

F
in

db
ug

s
−

 2
.1

2

co
m

bi
ne

d
−

 4
.0

0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
C

C
 −

 R
ef

us
ed

B
eq

ue
st

C
he

ck
st

yl
e

−
 1

.9
0

F
in

db
ug

s
−

 1
.9

0

P
M

D
 −

 2
.4

3

co
m

bi
ne

d
−

 3
.7

7

1.5

2.0

2.5

3.0

3.5

4.0

M
C

C
 −

 M
id

dl
eM

an

C
he

ck
st

yl
e

−
 1

.8
9

F
in

db
ug

s
−

 1
.8

9

P
M

D
 −

 2
.2

2

co
m

bi
ne

d
−

 4
.0

0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Fig. 5 Plots representing the results of Nemenyi test for statistical significance between the
MCC values obtained by Random Forest trained on static analysis warnings for code smells
detection.

have been shown to be relevant in the models built only on FindBugs warn-
ings, are no longer important when combining the tools.

Another important aspect is related to the presence of design-related fea-
tures in the list of the most relevant predictors. Those features, that are the
more in-line with the definition of code smell, were surprisingly excluded in the
context of our RQ2. The fact that they become more relevant when the three
tools are combined may represent an indicator of the fact that a combined
model can outperform the models discussed in RQ3.

Table 11 and Figure 4 show the performance of the combined model. As we
can see, there is a general improvement, particularly in terms of precision—
hence confirming our hypothesis on the potential of combining features of
different static analysis tools to reduce false positives. The MCC values, rang-
ing between 14% and 48% are clearly better than the one provided by the
single models, as discussed in RQ3. Results of Nemenyi test, reported in Fig-
ure 5, evidenced a clear statistical difference between the MCCs achieved by
the combined model and the ones provided by single-tool models. However,

30 Fabiano Pecorelli et al.

unfortunately, these results still indicate the unsuitability of machine learning
approaches for code smell detection, as already proven in previous studies in
the field [18, 55]. A more detailed discussion of what these findings imply for
code smell research and, particularly, for the applicability of machine learning
solutions to detect code smells is reported in Section 5.

Finding 5. Design-related features become important when the tool’s
warnings are combined. The combined model outperforms the three mod-
els described in RQ3. However, the overall performance is still quite
low, reinforcing past findings about the unsuitability of ML-based code
smell detection approaches.

Table 12 Aggregate results reporting the comparison of the warning-based model with the
metric-based one.

Warning Metric
Prec. Recall FM MCC Prec. Recall FM MCC

God Class 0.49 0.47 0.48 0.48 0.30 0.83 0.44 0.49
Complex Class 0.34 0.34 0.34 0.34 0.18 0.61 0.27 0.32
Spaghetti Code 0.31 0.19 0.24 0.24 0.15 0.34 0.21 0.22
Inappropriate Intimacy 0.21 0.15 0.17 0.17 0.10 0.23 0.14 0.15
Lazy Class 0.17 0.12 0.14 0.14 0.00 0.00 0.00 0.00
Middle Man 0.56 0.07 0.13 0.20 0.00 0.00 0.00 0.00
Refused Bequest 0.39 0.09 0.15 0.18 0.21 0.02 0.03 0.06

4.6 RQ6. Comparison with a baseline machine learner.

Table 12 and Figure 6 report the results regarding the comparison of the
performance achieved by the model that uses the combination of the warnings
generated by the three ASATs considered, and the model using structural
information as predictors. The first consideration is that the model using the
warnings generated by the three ASATs seems to slightly outperform the model
using structural information for almost all the code smell types. In particular,
this is the case of Lazy Class, Inappropriate Intimacy, Refused Bequest, and
Middle Man. These four smells do not have a direct correlation with structural
information given to the structural classifier. For instance, while we can use
simple structural metrics such as size and complexity to identify God Class and
Spaghetti Code instances, the ML model using structural information does not
include precise metrics describing other aspects such as laziness or intimacy
level between classes.

The results of the Nemenyi test depicted in Figure 7, confirm that in the
cases described above there is a statistically significant difference in the two
distributions. On the other hand, with respect to God Class, and Spaghetti
Code it is not possible to clearly establish which of the models perform better.

On Static Analysis Tools and Code Smell Prediction 31

0.00

0.25

0.50

0.75

Warning Metric

M
C

C
 −

 G
od

C
la

ss

0.00

0.25

0.50

0.75

Warning Metric

M
C

C
 −

 C
om

pl
ex

C
la

ss

0.2

0.4

0.6

0.8

Warning Metric

M
C

C
 −

 S
pa

gh
et

tiC
od

e

0.0

0.2

0.4

0.6

Warning Metric

M
C

C
 −

 L
az

yC
la

ss

0.0

0.2

0.4

0.6

Warning Metric

M
C

C
 −

 In
ap

pr
op

ria
te

In
tim

ac
y

0.0

0.2

0.4

0.6

Warning Metric

M
C

C
 −

 R
ef

us
ed

B
eq

ue
st

0.0

0.2

0.4

0.6

Warning Metric

M
C

C
 −

 M
id

dl
eM

an

Fig. 6 Boxplots representing the MCC values obtained by Random Forest trained on static
analysis warnings and structural metrics for code smells detection.

Finding 6. The ML model using ASATs warnings and the one using
structural information achieve very similar performance in detecting
code smells whose definition is strictly correlated with the structural
information involved. In all the other cases, the model using warning
categories as predictors appears to have better detection capabilities than
the one using only structural information.

4.7 RQ7. Orthogonality between the warning- and metric-based Prediction
Models.

Table 13 reports results of the complementarity analysis conducted between
the warning- and the metric-based machine learning prediction models. The
most evident result is that, regardless of the code smell considered, the two
techniques show a strong overlap, i.e., most of the smelly instances identified
by a technique are also identified by the other. Such a strong overlap could

32 Fabiano Pecorelli et al.

M
C

C
 −

 G
od

C
la

ss

W
ar

ni
ng

 −
 1

.4
3

M
et

ric
 −

 1
.5

7

1.3

1.4

1.5

1.6

1.7

M
C

C
 −

 C
om

pl
ex

C
la

ss

M
et

ric
 −

 1
.2

4

W
ar

ni
ng

 −
 1

.7
6

1.2

1.4

1.6

1.8

M
C

C
 −

 S
pa

gh
et

tiC
od

e

M
et

ric
 −

 1
.4

2

W
ar

ni
ng

 −
 1

.5
8

1.3

1.4

1.5

1.6

1.7

M
C

C
 −

 L
az

yC
la

ss

M
et

ric
 −

 1
.0

0

W
ar

ni
ng

 −
 2

.0
0

1.0

1.5

2.0

M
C

C
 −

 In
ap

pr
op

ria
te

In
tim

ac
y

M
et

ric
 −

 1
.1

5

W
ar

ni
ng

 −
 1

.8
5

1.0

1.2

1.4

1.6

1.8

2.0

M
C

C
 −

 R
ef

us
ed

B
eq

ue
st

M
et

ric
 −

 1
.0

0

W
ar

ni
ng

 −
 2

.0
0

0.5

1.0

1.5

2.0

2.5
M

C
C

 −
 M

id
dl

eM
an

M
et

ric
 −

 1
.0

0

W
ar

ni
ng

 −
 2

.0
0

1.0

1.5

2.0

Fig. 7 Plots representing the results of Nemenyi test for statistical significance between the
MCC values obtained by Random Forest trained on static analysis warnings and structural
metrics for code smells detection.

Table 13 Overlap analysis between the warning- and metric-based Prediction Models.

Code Smell Warning ∩ Metric Warning \ Metric Metric \ Warning
God Class 81% 11% 6%
Complex Class 76% 16% 8%
Spaghetti Code 72% 18% 10%
Inappropriate Intimacy 64% 22% 22%
Lazy Class 98% 1% 1%
Middle Man 86% 9% 5%
Refused Bequest 89% 7% 4%

indicate that using metrics and warnings in combination would not lead to
performance improvements. This is particularly true for Lazy Class, Refused
Bequest, and Middle Man for which there is a very small complementarity.
However, as for God Class, Complex Class, Spaghetti Code, and Inappropriate
Intimacy, results show that there exist a number of smelly instances that only
one of the techniques is able to detect, thus indicating a complementarity, even

On Static Analysis Tools and Code Smell Prediction 33

if limited. Therefore, it could be still worth to assess the performance achieved
by a machine learner based on both warnings and structural metrics.

Finding 7. The warning- and the metric-based machine learning code
smell prediction models have a strong overlap, regardless of the smell
considered. However, since in some cases the results showed a comple-
mentarity, although limited, we think that a combination of these two
set of predictors could still lead to a performance improvement.

Table 14 Aggregate results reporting the comparison of the combined model with the
model combining warnings categories and structural metrics.

Warning Metric Combined
Prec. Recall FM MCC Prec. Recall FM MCC Prec. Recall FM MCC

God Class 0.49 0.47 0.48 0.48 0.30 0.83 0.44 0.49 0.53 0.58 0.56 0.55
Complex Class 0.34 0.34 0.34 0.34 0.18 0.61 0.27 0.32 0.39 0.43 0.41 0.41
Spaghetti Code 0.31 0.19 0.24 0.24 0.15 0.34 0.21 0.22 0.36 0.21 0.25 0.27
Inappropriate Intimacy 0.21 0.15 0.17 0.17 0.10 0.23 0.14 0.15 0.08 0.09 0.10 0.11
Lazy Class 0.17 0.12 0.14 0.14 0.00 0.00 0.00 0.00 0.19 0.12 0.15 0.15
Middle Man 0.56 0.07 0.13 0.20 0.00 0.00 0.00 0.00 0.17 0.06 0.10 0.13
Refused Bequest 0.39 0.09 0.15 0.18 0.21 0.02 0.03 0.06 0.34 0.14 0.20 0.21

4.8 RQ8. Combining static analysis warnings and code metrics.

Table 14 and Figure 8 report the results of the performance achieved by
the two model based only on ASATs warnings and code metrics, and the one
combining warnings and structural information. Regardless of the considered
code smell type, the full model, i.e., the one considering both warnings and
structural metrics, appears to slightly outperform the other two. This is par-
ticularly true for God Class, Complex Class, Spaghetti Code, and Inappropriate
Intimacy.

Nemenyi test results, reported in Figure 9, confirm that for God Class,
Complex Class, and Inappropriate Intimacy the full model performs signifi-
cantly better than the others. This result is in line with RQ7 findings. Indeed,
a higher complementarity has been shown for such smells, therefore the com-
bined model is able to significantly improve the performance of warning- and
metric-based machine learners.

The reported results clearly indicate that adding more information to ML
classifiers helps to improve the overall performance in most cases. However, on
the other hand, there is still the need of defining a set of metrics that could
further improve code smell detection techniques’ performance. Our sugges-
tion for future studies is to involve a wider set of predictors of various kinds
(e.g., structural, textual, historical) in order to give the classifiers as much
information as possible.

34 Fabiano Pecorelli et al.

0.25

0.50

0.75

1.00

Warning Metric Combined

M
C

C
 −

 G
od

C
la

ss

0.25

0.50

0.75

1.00

Warning Metric Combined

M
C

C
 −

 C
om

pl
ex

C
la

ss

0.25

0.50

0.75

1.00

Warning Metric Combined

M
C

C
 −

 S
pa

gh
et

tiC
od

e

0.2

0.3

0.4

0.5

0.6

Warning Metric Combined

M
C

C
 −

 L
az

yC
la

ss

0.2

0.4

0.6

0.8

Warning Metric Combined

M
C

C
 −

 In
ap

pr
op

ria
te

In
tim

ac
y

0.25

0.50

0.75

1.00

Warning Metric Combined

M
C

C
 −

 R
ef

us
ed

B
eq

ue
st

0.2

0.3

0.4

0.5

0.6

Warning Metric Combined

M
C

C
 −

 M
id

dl
eM

an

Fig. 8 Boxplots representing the MCC values obtained by Random Forest trained on static
analysis warnings and on the combination of static analysis warnings with structural metrics
for code smells detection.

Finding 8. The model combining warning categories and structural in-
formation significantly outperforms the one based only on ASATs warn-
ings in most of the cases. Adding other metrics to the model could be a
winning strategy for future improvements.

Table 15 Type I and Type II Errors Achieved in the comparison between the combined
model, the optimistic constant, the pessimistic constant, and a random classifier

Combined model Optimistic Constant Pessimistic Constant Random
Code Smell Type I Type II Type I Type II Type I Type II Type I Type II
God Class 4034 (4.68%) 214 (0.25%) 85799 (99.53%) 0 (0.00%) 0 (0.00%) 403 (0.47%) 43156.5 (50.06%) 650.5 (0.75%)
Complex Class 4907 (7.15%) 183 (0.27%) 68375 (99.60%) 0 (0.00%) 0 (0.00%) 277 (0.40%) 34372.5 (50.07%) 26.5 (0.04%)
Spaghetti Code 5005 (5.71%) 669 (0.76%) 86886 (99.09%) 0 (0.00%) 0 (0.00%) 796 (0.91%) 44526 (50.78%) 391.5 (0.45%)
Inappropriate Intimacy 728 (1.10%) 175 (0.26%) 65879 (99.69%) 0 (0.00%) 0 (0.00%) 205 (0.31%) 33984 (51.43%) 1202.5 (1.82%)
Lazy Class 1698 (3.29%) 108 (0.21%) 51525 (99.76%) 0 (0.00%) 0 (0.00%) 123 (0.24%) 26419.5 (51.15%) 101.5 (0.20%)
Middle Man 3695 (9.10%) 62 (0.15%) 40537 (99.83%) 0 (0.00%) 0 (0.00%) 70 (0.17%) 21271.5 (52.38%) 221.5 (0.55%)
Refused Bequest 8837 (11.28%) 377 (0.48%) 77870 (99.40%) 0 (0.00%) 0 (0.00%) 467 (0.60%) 37824.5 (48.28%) 1698.5 (2.17%)

On Static Analysis Tools and Code Smell Prediction 35

M
C

C
 −

 G
od

C
la

ss

W
ar

ni
ng

 −
 1

.7
5

M
et

ric
 −

 1
.8

9

C
om

bi
ne

d
−

 2
.3

6
1.6

1.8

2.0

2.2

2.4

2.6

M
C

C
 −

 C
om

pl
ex

C
la

ss

W
ar

ni
ng

 −
 1

.6
1

M
et

ric
 −

 1
.8

2

C
om

bi
ne

d
−

 2
.5

7

1.5

2.0

2.5

M
C

C
 −

 S
pa

gh
et

tiC
od

e

W
ar

ni
ng

 −
 1

.7
4

M
et

ric
 −

 1
.7

7

C
om

bi
ne

d
−

 2
.4

9

1.6

1.8

2.0

2.2

2.4

2.6

M
C

C
 −

 L
az

yC
la

ss

W
ar

ni
ng

 −
 1

.9
5

M
et

ric
 −

 2
.0

3

C
om

bi
ne

d
−

 2
.0

3

1.6

1.8

2.0

2.2

2.4

M
C

C
 −

 In
ap

pr
op

ria
te

In
tim

ac
y

W
ar

ni
ng

 −
 1

.6
0

M
et

ric
 −

 1
.6

0

C
om

bi
ne

d
−

 2
.8

1

1.5

2.0

2.5

3.0

M
C

C
 −

 R
ef

us
ed

B
eq

ue
st

W
ar

ni
ng

 −
 1

.9
7

M
et

ric
 −

 2
.0

0

C
om

bi
ne

d
−

 2
.0

3

1.7

1.8

1.9

2.0

2.1

2.2

2.3
M

C
C

 −
 M

id
dl

eM
an

W
ar

ni
ng

 −
 1

.8
2

M
et

ric
 −

 2
.0

6

C
om

bi
ne

d
−

 2
.1

2

1.4

1.6

1.8

2.0

2.2

2.4

Fig. 9 Plots representing the results of Nemenyi test for statistical significance between
the MCC values obtained by Random Forest trained on static analysis warnings and on the
combination of static analysis warnings with structural metrics for code smells detection.

5 Discussion and Implications of the Study

The results of the study pointed out a number of findings and implications for
researchers that deserve further discussion.

On the implications of the performance achieved. The results of our
analyses have shown that a combination of features can improve the per-
formance of ML-based code smell detection. This was true when combining
static analysis warnings raised by different automated tools, but also when
combining the warnings with code metrics considered by previous work. But
is this enough? To further understand this point, we have compared the per-
formance of the proposed combined model with those of three baselines: (i)
the Optimistic Constant classifier, that classifies any instance as smelly;
(ii) the Pessimistic Constant classifier, that classifies any instance as non-
smelly; and (iii) a Random classifier, which classifies an instance as smelly
or non-smelly with a probability of 50%.

36 Fabiano Pecorelli et al.

We performed this comparison in terms of Type I, that counts the number
of false positive errors, and Type II, that counts the number of false negative
errors. The selection of these two metrics was inspired by previous work in
the literature [22]. Table 15 reports the total number of Type I and Type II
errors. Results show that, regardless on the code smell under consideration,
the Pessimistic Constant achieves the best results in terms of total errors,
i.e., Type I + Type II, thus pointing out once again the low performance of
ML-based code smell detection techniques.
These results lead to clear implications: The problem of code smell detec-
tion through machine learning still requires specific features that have not
been taken into account yet. Moreover, additional AI-specific instruments
should be considered in the future with the aim of improving the code smell
detection capabilities of these techniques.

On static analysis warnings and code smells. According to the results
of RQ2, the gain provided by the warnings raised by static analysis tools to
the predictions done when using those warnings as features for code smell
detection is limited. These results revealed a limited connection between the
types of issues raised by static analysis tools and the specific code smells
considered in the study. While this poor connection might be due to the fact
that static analysis tools aim at capturing a wider set of general source code
issues, we still claim that our results are somehow worrisome since they show
that the warnings given to developers do not evidently refer to any design
problem that previous research has related to change- and fault-proneness
[28, 51]. To some extent, such a low relation with code smells might be
one of the causes leading developers to ignore the warnings raised by static
analysis tools in practice [19, 68]. On the one hand, our findings suggest
that further studies on the relation between static analysis tools and code
smells should be performed. On the other hand, tool vendors could exploit
the reported results in order to propose some tuning of the static analysis
tools that enable the identification of code smell-related warnings.

A possible factor influencing the performance. As a complementary
and follow-up discussion, our analyses conducted in RQ4 revealed that classi-
fication models built using static analysis warnings have a very low precision.
While in the context of the paper we mainly highlighted the poor precision
from the perspective of the models, and given for granted the poor relation
between static analysis warnings and code smells discussed above, another
problem might have been the cause of our results: the amount of false posi-
tive warnings raised by static analysis tools. While we did not establish the
amount of false positives output by the static analysis tools in our context,
this is a well-known problem that has been raised in literature [24] and that,
very likely, has had some influence on our findings. On the one hand, we
plan to further investigate this aspect and possibly quantify the influence of
false positives on our results. On the other hand we can still remark, for the
benefit of researchers working in this field, that the problem of false positives
is something that might have impacted the overall contribution that static

On Static Analysis Tools and Code Smell Prediction 37

analysis tools may have provided to the experimented code smell detection
models. As such, our results might be seen as an additional motivation to
investigate novel instruments to improve current static analysis tools.

On the connection with the state of the art. The empirical studies
conducted in this paper represented the first attempt to make static
analysis warnings useful for code smell detection. Unfortunately, the results
achieved confirmed the current knowledge on the state of machine learning-
based code smell detection. At the same time, our findings extend the body
of knowledge under two perspectives. First, researchers in the field of code
smells might take advantage of our study to further investigate the reasons
behind our results, possibly revealing the causes leading static analysis
warnings to be not effective for detecting code smells or even proposing
alternative solutions to make them work. Second, researchers in the field of
automated static analysis might be interested in understanding the reasons
why currently available tools do not properly support the identification of
diffused and dangerous design issues, even tough certain specific warnings
types are supposed to provide indications in this respect.

Large-scale experimentations matter. With respect to the preliminary
findings achieved in our previous work [36], our new results did not confirm
the suitability of static analysis warnings for the detection of code smells
through machine learning methods. This was due to the larger-scale nature
of this experiment, where we tested the devised approaches on a dataset con-
taining 20 more projects than the preliminary study. Therefore, as a meta-
result our analyses confirmed the importance of large-scale experimentations
in software engineering as a way to draw more definitive conclusions on a
phenomenon of interest. Hence, based on our experience, we can recommend
researchers to carefully consider the scale of the experiments when running
empirical studies and take into account the overall generalizability of the
reported findings when reporting and discussing results.

6 Threats to Validity

Some aspects might have threaten the validity of the results achieved in our
empirical study. This section reports on these aspects and explains how we
mitigated them, following the guidelines provided by Wohlin [71].

Construct Validity. Threats in this category concern with the relation-
ship between theory and observation. These are mainly due to possible mea-
surement errors. A first discussion point is related to the dataset exploited in
our study. In this respect, we decided to rely on a dataset reporting manually-
validated code smell instances: this decision was based on previous findings
showing that the meaningfulness and actionability of the results highly de-
grade when considering tool-based oracles [17]. As such, our choice made the
findings more reliable—we did not include in our ground-truth false positives
and negatives—at the cost of having less systems analyzed: we are aware of

38 Fabiano Pecorelli et al.

this possible limitation and we plan indeed to conduct larger-scale analyses as
part of our future research agenda.

When it comes to the selection of the automated static analysis tools, we
considered three of the most reliable and adopted tools [68]. Nevertheless,
we cannot exclude the presence of false positives or false negatives in the
detected warnings. While this may have influenced the results achieved, our
study showed that the performance of code smell prediction models can be
fairly high even in presence of false positives and negatives: this means that,
in cases of tools giving a lower amount of false alarms or being able to provide
more correct information, the accuracy of the proposed learners might be even
increased. In any case, further analyses targeting the impact of misinformation
on the performance of the learners are part of our future research agenda.

Internal Validity. These threats are related to the internal factors of the
study that might have affected the results. When assessing the role of static
analysis tools for code smell detection, we took into account three tools with
the aim of increasing our knowledge on the matter. Yet, we recognize that
other tools might consider different, more powerful warnings that may affect
the performance of the learners. Also in this case, further analyses are part of
our future research agenda.

External Validity. As for the generalizability of the results, our empirical
study considered all the systems that could be actually analyzed from the ex-
ploited public dataset [51, 48]. As also reported above, we are aware that our
analyses have been bounded by technical limitations, e.g., the inability to com-
pile some of the systems in the dataset, or by design decisions, e.g., the choice
of considering a dataset containing actual code smell instances. Nonetheless,
we preferred to conduct a more precise and reliable analysis, sacrificing quan-
tity. Yet, we do believe that the results presented represent a valuable base for
researchers, practitioners, and tool vendors that can be used and/or extended
to reconsider the role of static analysis tools in the context of software quality
assessment and improvement. In this respect, we also highlight the need for
additional publicly available datasets of validated code smell instances, which
might allow more generalizable and reliable investigations.

Conclusion Validity. These threats are related to the relationship be-
tween the treatment and the outcome. In our research, we adopted different
machine learning techniques to reduce the bias of the low prediction power that
a single classifier could have. In addition, we did not limit ourselves to the us-
age of these classifiers, but also addressed some of the possible issues arising
when employing them. For instance, we dealt with multicollinearity problems,
hyper-parameter configuration, and data unbalance. We recognize, however,
that other statistical or machine learning techniques (e.g. deep learning) might
have yielded similar or better accuracy than the techniques we used.

Last but not least, we applied the Nemenyi test [44] to statistically verify
the performance achieved by the experimented machine learning approaches.

On Static Analysis Tools and Code Smell Prediction 39

7 Conclusion

In this paper, we assessed the adequacy of static analysis warnings in the
context of code smell prediction. We started by analyzing the contribution
given by each warning type to the prediction of seven code smell types. Then,
we measured the performance of machine learning models using static analysis
warnings as features and aiming at identifying the presence of code smells.

The results achieved when experimenting the individual models revealed
low performance: this was mainly due to their poor precision. In an effort of
dealing with such low performance, we considered the possibility to combine
the warnings raised by different static analysis tools: in this regard, we first
measured the orthogonality of the code smell instances correctly identified
by machine learners exploiting different warnings; then, we combined these
warnings in a combined model.

The results of our study reported that, while a combined model can signif-
icantly improve the performance of the individual models, it yields a similar
accuracy than the one of a random classifier. We also found out that ma-
chine learning models built using static analysis warnings reach a particularly
low accuracy when considering code smells targeting coupling and inheritance
properties of source code. The outcomes of this empirical study represent the
main inputs for our future research agenda, which is mainly oriented to face
the challenges related to the definition of ad-hoc features for code smell de-
tection through machine learning approaches. In addition, part of our future
research work in the area will be devoted to the qualitative analysis of the role
of static analysis warnings for code smell detection. In particular, we plan to
complement the achieved findings through investigations conducted on source
code snippets mined from StackOverflow, for which we plan to analyze the
relation between the posts issued by developers and related to static analysis
warnings and the presence of code smells in those snippets. We also plan to
extend the scope of our work with method-level code smells. In this respect,
we aim at defining the most appropriate tools and data analysis methodologies
that may help investigating how static analysis warnings impact the detection
of this category of code smells. Last but not least, we plan to systematically
assess deep learning methods [16, 35], which might more naturally combine
features, given that they act directly on source code.

Acknowledgement

The authors would like to sincerely thank the Associate Editor and anony-
mous Reviewers for the insightful comments and feedback provided during the
review process. Fabio acknowledges the support of the Swiss National Science
Foundation through the SNF Project No. PZ00P2 186090 (TED).

40 Fabiano Pecorelli et al.

Declarations

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported
in this paper.

References

1. Abbes M, Khomh F, Gueheneuc YG, Antoniol G (2011) An empirical
study of the impact of two antipatterns, blob and spaghetti code, on
program comprehension. In: 2011 15th European Conference on Software
Maintenance and Reengineering, IEEE, pp 181–190

2. Al-Shaaby A, Aljamaan H, Alshayeb M (2020) Bad smell detection us-
ing machine learning techniques: a systematic literature review. Arabian
Journal for Science and Engineering 45(4):2341–2369

3. Amorim L, Costa E, Antunes N, Fonseca B, Ribeiro M (2015) Experience
report: Evaluating the effectiveness of decision trees for detecting code
smells. In: 26th International Symposium on Software Reliability Engi-
neering (ISSRE), pp 261–269

4. Arcelli Fontana F, Zanoni M (2017) Code smell severity classification using
machine learning techniques. Know-Based Syst 128(C):43–58

5. Arcelli Fontana F, Braione P, Zanoni M (2012) Automatic detection of bad
smells in code: An experimental assessment. J Object Technol 11(2):5–1

6. Arcelli Fontana F, Ferme V, Zanoni M, Yamashita A (2015) Automatic
metric thresholds derivation for code smell detection. In: 6th International
Workshop on Emerging Trends in Software Metrics, IEEE, pp 44–53

7. Arcelli Fontana F, Dietrich J, Walter B, Yamashita A, Zanoni M (2016)
Antipattern and code smell false positives: Preliminary conceptualization
and classification. In: 23rd international conference on software analysis,
evolution, and reengineering (SANER), IEEE, vol 1, pp 609–613

8. Arcelli Fontana F, Mäntylä MV, Zanoni M, Marino A (2016) Comparing
and experimenting machine learning techniques for code smell detection.
Empirical Softw Engg 21(3):1143–1191

9. Azeem MI, Palomba F, Shi L, Wang Q (2019) Machine learning techniques
for code smell detection: A systematic literature review and meta-analysis.
Information and Software Technology 108:115–138

10. Banker RD, Datar SM, Kemerer CF, Zweig D (1993) Software complexity
and maintenance costs. Communications of the ACM 36(11):81–95

11. Brown WJ, Malveau RC, McCormick III HW, Mowbray TJ (1998) Refac-
toring software, architectures, and projects in crisis

12. Carver JC, Juristo N, Baldassarre MT, Vegas S (2014) Replications of
software engineering experiments

13. Catolino G, Palomba F, Arcelli Fontana F, De Lucia A, Zaidman A, Fer-
rucci F (2020) Improving change prediction models with code smell-related
information. Empirical Software Engineering 25(1)

On Static Analysis Tools and Code Smell Prediction 41

14. Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented
design. IEEE Transactions on software engineering 20(6):476–493

15. Cunningham W (1992) The wycash portfolio management system.
OOPSLA-92

16. Das AK, Yadav S, Dhal S (2019) Detecting code smells using deep learning.
In: TENCON 2019-2019 IEEE Region 10 Conference (TENCON), IEEE,
pp 2081–2086

17. Di Nucci D, Palomba F, Tamburri D, Serebrenik A, De Lucia A (2018)
Detecting code smells using machine learning techniques: Are we there
yet? In: Int. Conf. on Software Analysis, Evolution, and Reengineering

18. Di Nucci D, Palomba F, Tamburri DA, Serebrenik A, De Lucia A (2018)
Detecting code smells using machine learning techniques: are we there
yet? In: 26th international conference on software analysis, evolution and
reengineering (SANER), IEEE, pp 612–621

19. Emanuelsson P, Nilsson U (2008) A comparative study of industrial static
analysis tools. Electronic notes in theoretical computer science 217:5–21

20. Falessi D, Russo B, Mullen K (2017) What if i had no smells? ESEM
21. Fowler M, Beck K (1999) Refactoring: Improving the design of existing

code. Addison-Wesley Longman Publishing Co, Inc
22. Haiduc S, Bavota G, Oliveto R, De Lucia A, Marcus A (2012) Automatic

query performance assessment during the retrieval of software artifacts.
In: Proceedings of the 27th IEEE/ACM international conference on Au-
tomated Software Engineering, pp 90–99

23. I Tollin FAF, Zanoni M, Roveda R (2017) Change prediction through
coding rules violations. EASE’17, pp 61–64

24. Johnson B, Song Y, Murphy-Hill E, Bowdidge R (2013) Why don’t soft-
ware developers use static analysis tools to find bugs? In: 35th Interna-
tional Conference on Software Engineering (ICSE), IEEE, pp 672–681

25. Kaur A, Jain S, Goel S, Dhiman G (2021) A review on machine-learning
based code smell detection techniques in object-oriented software system
(s). Recent Advances in Electrical & Electronic Engineering (Formerly
Recent Patents on Electrical & Electronic Engineering) 14(3):290–303

26. Khomh F, Vaucher S, Gueheneuc YG, Sahraoui H (2009) A bayesian ap-
proach for the detection of code and design smells. In: Int. Conf. on Quality
Software (QSIC ’09), IEE, Jeju, Korea, pp 305–314

27. Khomh F, Vaucher S, Guéhéneuc YG, Sahraoui H (2011) Bdtex: A gqm-
based bayesian approach for the detection of antipatterns. Journal of Sys-
tems and Software 84(4):559–572

28. Khomh F, Di Penta M, Guéhéneuc YG, Antoniol G (2012) An exploratory
study of the impact of antipatterns on class change-and fault-proneness.
Empirical Software Engineering 17(3):243–275

29. Kreimer J (2005) Adaptive detection of design flaws. Electronic Notes in
Theoretical Computer Science 141(4):117 – 136, fifth Workshop on Lan-
guage Descriptions, Tools, and Applications (LDTA 2005)

30. Lehman MM (1996) Laws of software evolution revisited. In: European
Workshop on Software Process Technology, Springer, pp 108–124

42 Fabiano Pecorelli et al.

31. Lenarduzzi V, Lomio F, Huttunen H, Taibi D (2019) Are sonarqube rules
inducing bugs? 27th International Conference on Software Analysis, Evo-
lution and Reengineering (SANER) (preprint arXiv:190700376)

32. Lenarduzzi V, Martini A, Taibi D, Tamburri DA (2019) Towards
surgically-precise technical debt estimation: Early results and research
roadmap. In: 3rd International Workshop on Machine Learning Techniques
for Software Quality Evaluation, MaLTeSQuE 2019, p 37–42

33. Lenarduzzi V, Sillitti A, Taibi D (2020) A survey on code analysis tools for
software maintenance prediction. In: 6th International Conference in Soft-
ware Engineering for Defence Applications, Springer International Pub-
lishing, pp 165–175

34. Lenarduzzi V, Nikkola V, Saarimäki N, Taibi D (2021) Does code quality
affect pull request acceptance? an empirical study. Journal of Systems and
Software 171

35. Liu H, Jin J, Xu Z, Bu Y, Zou Y, Zhang L (2019) Deep learning based
code smell detection. IEEE transactions on Software Engineering

36. Lujan S, Pecorelli F, Palomba F, De Lucia A, Lenarduzzi V (2020) A pre-
liminary study on the adequacy of static analysis warnings with respect to
code smell prediction. In: Proceedings of the 4th ACM SIGSOFT Inter-
national Workshop on Machine-Learning Techniques for Software-Quality
Evaluation, pp 1–6

37. Lujan S, Pecorelli F, Palomba F, De Lucia A, Lenarduzzi V (2020) A
Preliminary Study on the Adequacy of Static Analysis Warnings with
Respect to Code Smell Prediction, p 1–6

38. Ma W, Chen L, Zhou Y, Xu B (2016) Do we have a chance to fix bugs when
refactoring code smells? In: 2016 International Conference on Software
Analysis, Testing and Evolution (SATE), pp 24–29

39. Maiga A, Ali N, Bhattacharya N, Sabané A, Guéhéneuc YG, Aimeur E
(2012) Smurf: A svm-based incremental anti-pattern detection approach.
In: Working Conference on Reverse Engineering, pp 466–475

40. Maiga A, Ali N, Bhattacharya N, Sabané A, Guéhéneuc Y, Aimeur E
(2012) Smurf: A svm-based incremental anti-pattern detection approach.
In: 19th Working Conference on Reverse Engineering, pp 466–475

41. Maiga A, Ali N, Bhattacharya N, Sabané A, Guéhéneuc Y, Antoniol G,
Aı̈meur E (2012) Support vector machines for anti-pattern detection. In:
27th IEEE/ACM International Conference on Automated Software Engi-
neering, pp 278–281

42. McCabe TJ (1976) A complexity measure. IEEE Transactions on software
Engineering (4):308–320

43. Moha N, Gueheneuc YG, Duchien L, Le Meur AF (2009) Decor: A method
for the specification and detection of code and design smells. IEEE Trans-
actions on Software Engineering 36(1):20–36

44. Nemenyi P (1962) Distribution-free multiple comparisons. In: Biometrics,
International Biometric Soc 1441 I ST, NW, SUITE 700, WASHINGTON,
DC 20005-2210, vol 18, p 263

On Static Analysis Tools and Code Smell Prediction 43

45. Oliveto R, Gethers M, Poshyvanyk D, De Lucia A (2010) On the equiv-
alence of information retrieval methods for automated traceability link
recovery. In: 2010 IEEE 18th International Conference on Program Com-
prehension, IEEE, pp 68–71

46. Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A (2014) Do they
really smell bad? a study on developers’ perception of bad code smells. In:
International Conference on Software Maintenance and Evolution, IEEE,
pp 101–110

47. Palomba F, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D, De Lucia
A (2014) Mining version histories for detecting code smells. IEEE Trans-
actions on Software Engineering 41(5):462–489

48. Palomba F, Di Nucci D, Tufano M, Bavota G, Oliveto R, Poshyvanyk D,
De Lucia A (2015) Landfill: An open dataset of code smells with pub-
lic evaluation. In: 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories, pp 482–485

49. Palomba F, Panichella A, De Lucia A, Oliveto R, Zaidman A (2016) A
textual-based technique for smell detection. In: 24th international confer-
ence on program comprehension (ICPC), IEEE, pp 1–10

50. Palomba F, Zanoni M, Fontana FA, De Lucia A, Oliveto R (2017) To-
ward a smell-aware bug prediction model. IEEE Transactions on Software
Engineering 45(2):194–218

51. Palomba F, Bavota G, Di Penta M, Fasano F, Oliveto R, De Lucia A (2018)
On the diffuseness and the impact on maintainability of code smells: a large
scale empirical investigation. Empirical Software Engineering 23(3):1188–
1221

52. Palomba F, Bavota G, Penta MD, Fasano F, Oliveto R, Lucia AD (2018)
On the diffuseness and the impact on maintainability of code smells: a large
scale empirical investigation. Empirical Software Engineering 23(3):1188–
1221

53. Pascarella L, Palomba F, Bacchelli A (2019) Fine-grained just-in-time de-
fect prediction. Journal of Systems and Software 150:22–36

54. de Paulo Sobrinho EV, De Lucia A, de Almeida Maia M (2018) A sys-
tematic literature review on bad smells—5 w’s: which, when, what, who,
where. IEEE Transactions on Software Engineering

55. Pecorelli F, Palomba F, Di Nucci D, De Lucia A (2019) Comparing heuris-
tic and machine learning approaches for metric-based code smell detection.
In: 27th International Conference on Program Comprehension (ICPC),
IEEE, pp 93–104

56. Pecorelli F, Di Nucci D, De Roover C, De Lucia A (2020) A large empirical
assessment of the role of data balancing in machine-learning-based code
smell detection. Journal of Systems and Software p 110693

57. Pecorelli F, Palomba F, Khomh F, De Lucia A (2020) Developer-driven
code smell prioritization. In: 17th International Conference on Mining
Software Repositories, MSR ’20, p 220–231

58. Pecorelli F, Lujan S, Lenarduzzi V, Palomba F, De Lucia A (2021) On the
adequacy of static analysis warnings withrespect to code smell prediction

44 Fabiano Pecorelli et al.

- online appendix https://github.com/sesalab/OnlineAppendices/

tree/main/EMSE21-ASATsCodeSmell

59. Politowski C, Khomh F, Romano S, Scanniello G, Petrillo F, Guéhéneuc
YG, Maiga A (2020) A large scale empirical study of the impact of
spaghetti code and blob anti-patterns on program comprehension. Infor-
mation and Software Technology 122:106278

60. Quinlan JR (1986) Induction of decision trees. Machine learning 1(1):81–
106

61. Shcherban S, Liang P, Tahir A, Li X (2020) Automatic identification of
code smell discussions on stack overflow: A preliminary investigation. In:
14th ACM / IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), ESEM ’20

62. Sjøberg DI, Yamashita A, Anda BC, Mockus A, Dyb̊a T (2012) Quanti-
fying the effect of code smells on maintenance effort. IEEE Transactions
on Software Engineering 39(8):1144–1156

63. Soh Z, Yamashita A, Khomh F, Guéhéneuc YG (2016) Do code smells
impact the effort of different maintenance programming activities? In: 2016
IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), IEEE, vol 1, pp 393–402

64. Taibi D, Janes A, Lenarduzzi V (2017) How developers perceive smells
in source code: A replicated study. Information and Software Technology
92:223–235

65. Tantithamthavorn C, Hassan AE (2018) An experience report on defect
modelling in practice: Pitfalls and challenges. In: Proceedings of the 40th
International Conference on Software Engineering: Software Engineering
in Practice, pp 286–295

66. Tufano M, Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A,
Poshyvanyk D (2017) There and back again: Can you compile that snap-
shot? Journal of Software: Evolution and Process 29(4):e1838

67. Vassallo C, Panichella S, Palomba F, Proksch S, Zaidman A, Gall HC
(2018) Context is king: The developer perspective on the usage of static
analysis tools. 26th International Conference on Software Analysis, Evo-
lution and Reengineering (SANER)

68. Vassallo C, Panichella S, Palomba F, Proksc S, Gall H, Zaidman A (2019)
How developers engage with static analysis tools in different contexts.
Empirical Software Engineering

69. Wedyan F, Alrmuny D, Bieman JM (2009) The effectiveness of automated
static analysis tools for fault detection and refactoring prediction. In: In-
ternational Conference on Software Testing Verification and Validation,
pp 141–150

70. White M, Tufano M, Vendome C, Poshyvanyk D (2016) Deep learning code
fragments for code clone detection. In: Int. Conf. on Automated Software
Engineering (ASE), pp 87–98

71. Wohlin C, Runeson P, Höst M, Ohlsson M, Regnell B, Wesslén A (2000)
Experimentation in Software Engineering: An Introduction

On Static Analysis Tools and Code Smell Prediction 45

72. Yamashita A, Moonen L (2012) Do code smells reflect important maintain-
ability aspects? In: 2012 28th IEEE international conference on software
maintenance (ICSM), IEEE, pp 306–315

73. Yamashita A, Moonen L (2013) Do developers care about code smells? an
exploratory survey. In: 2013 20th Working Conference on Reverse Engi-
neering (WCRE), IEEE, pp 242–251

74. Ye T, Kalyanaraman S (2003) A recursive random search algorithm for
large-scale network parameter configuration. In: Proceedings of the 2003
ACM SIGMETRICS International conference on Measurement and mod-
eling of computer systems, pp 196–205

