
OSSARA: Abandonment Risk
Assessment for Embedded
Open Source Components

Xiaozhou Li
Tampere University

Sergio Moreschini
Tampere University

Fabiano Pecorelli
Tampere University

Davide Taibi
Tampere University

Abstract—
Accompanied by the upsurging adoption of open source software (OSS) in a wide range of
complex software-intensive systems, practitioners often raise multiple concerns about their
maintainability and sustainability. A system that embeds unmaintained components is fragile
towards various risks which could result in dire consequences. To address such concerns, this
paper introduces the OSS Abandonment Risk Assessment (OSSARA) model, which evaluates
the abandonment risk by synthesizing the prediction of potential abandonment of the embedded
OSS components.

SOFTWARE needs to be continuously updated
and maintained to keep being useful [1]. This is
particularly true for open source software (OSS)
components and libraries, which are more and
more often integrated into large and complex
systems.

For companies developing long-term projects,
all the embedded OSS components should guar-
antee a high life expectancy and continue being
maintained as long as the system embedding
them is on duty. Embedding abandoned OSSs
in a critical system could induce severe risks.
For example, new security vulnerabilities could
be exploited; bugs and issues could never be
resolved; functions could become obsolete and
inadequate for new environments. Metaphorically,
systems embedding abandoned OSSs are like ve-

hicles with rusted gears or human bodies with ma-
lignant tumors. Indeed, the abandonment of OSS
components might produce a ”domino effect” in
the projects embedding them that shall result in
the inoperativeness of all the systems relying on
them. The importance of such a statement is in the
fact that even if a single embedded software is not
available a whole project can be compromised.

In this respect, we were recently asked by
a local branch of a global company, working in
different domains, and with over 200K employees
in over 150 countries, to devise a methodology
aimed at identifying those components embedded
in their software products that are most likely to
be abandoned shortly. To meet their requirements,
we designed the OSS Abandonment Risk As-
sessment (OSSARA) model, which we present

IEEE Software Under Review by the IEEE Computer Society © 2022 IEEE 1



in this paper. This model aims to assess the
abandonment risk of a software system based
on the abandonment prediction for each em-
bedded OSS component and the criticality that
each component represents for the system. With
the OSSARA model, the practitioners shall be
intuitively aware of the overall abandonment risk
of the system and the predictive assessment of
each component’s abandonment. Therefore, the
practitioners can monitor the system’s risk level
and proactively choose either to contribute to the
OSS component maintenance and evolution or to
plan for the substitutions.

Related Work
Over the last decade, researchers have been

giving great attention to software sustainability.
Samoladas et al. [2] successfully exploited

survival analysis methods to predict the surviv-
ability of software projects.

Businge et al. [3] analyzed the survivability
of 1,447 versions of 467 Eclipse third-party plu-
gins and classified them into two categories: the
ones relying on stable dependencies and those
on at least one potentially unstable dependency.
They observed that plugins that only use stable
dependencies are more prone to maintain a higher
source compatibility rate over time.

Coelho et al. [4] leveraged machine learning
to build a model able to identify unmaintained
GitHub projects based on a set of 13 process met-
rics achieving promising results. Afterward, they
presented an extended version of the work [5]
defining a metric to indicate how risky it would
be depending on a given GitHub project.

Valiev et al. [6] assessed open source Python
projects’ sustainability based on ecosystem-level
factors, i.e., factors describing inter-dependencies
between packages. They calculated sustainability
by the mean of dormancy, i.e., the period of
inactivity for a project repository. Results indi-
cated that the number of connections, as well as
the position within the dependency network, are
significant factors affecting the projects’ sustain-
ability.

Later on, Mujahid et al. [7] proposed a scal-
able approach that relies on the package centrality
in the ecosystem to identify packages in decline.
Results of an evaluation conducted on the npm
ecosystem have shown very good prediction ca-

pabilities, thus indicating centrality as a very im-
portant factor for predicting project abandonment.

In our previous work [8], we investigated
approaches to automate the evaluation of infor-
mation from OSS Projects, however, we did not
propose an assessment and risk model.

In contrast to the related literature, we are
proposing a method to calculate the abandonment
risk based on the risk that embedded compo-
nents of a system will be abandoned themselves.
Moreover, thanks to the support we have received
from our case company, our method is completely
suitable for real industrial applications.

Software Composition using OSS
Software composition via the adoption of

components off-the-shelf (COTS) has long been
considered as an effective practice for software
implementation [9]. Despite the disadvantages of
COTS in terms of their uneven performance, lack
of evolution control, and lack of inter-operating
capabilities, their adoption benefits the practition-
ers by simply preventing them from ”reinventing
the wheel.” OSS can be considered as COTS since
most of the embedded components, e.g., libraries
or plug-ins, are usually integrated as is.

The main advantages of OSS components are
the open licenses, which usually enable access to
the source code, and eventually to make exten-
sions. Moreover, OSS is often accessible without
paying a license fee, thus reducing adoption costs.

When developing a new software project, the
most common practice is to integrate several
components and combine them by writing custom
code. The portion of the custom code is usually
minimal compared to the total size of such com-
ponents. The development of all the components
as custom software might require a large amount
of effort, not only for the development itself but
also for the maintenance side.

Creating a system consisting of several com-
ponents also introduces risks since the mainte-
nance of each OSS component is usually del-
egated to the OSS community. However, there
might be cases where the community does not
keep on maintaining them; and therefore compa-
nies integrating these unmaintained OSS compo-
nents need to find alternatives, either deciding to
maintain the components themselves or replacing
them with alternatives.

2 IEEE Software



OSSARA Model
Herein, we propose the OSSARA model to

assess the abandonment risk of a system based on
its embedded OSS components. Given a time, the
abandonment risk is calculated based on (i) the
likelihood of each component to be abandoned
in the considered period, and (ii) the weight that
each component has for the main system, follow-
ing the classic risk assessment notion Risk =
Prob(Loss)× Size(Loss) [10]

Figure 1 depicts the OSSARA process. Start-
ing from a software system that embeds several
OSS components (14 in the provided example),
we first calculate for each component the aban-
donment probability in the given time and the
weight (abandonment probability and weight are
represented by colors and box sizes respectively).
Then, we combine these two pieces of informa-
tion to calculate the risk that the main system will
be abandoned within the considered period.

More formally, the overall abandonment risk
Ra for a system (Ra ∈ [0, 1]) that integrates k
OSS components is calculated as follows:

Ra =
k∑

m=1

w(Om) ∗ r(Om).

where w(Om) ∈ [0, 1] represents the weight of
the OSS component Om and r(Om) ∈ [0, 1] the
risk that Om will be abandoned. The weight of a
component w(Om) can be quantified by counting
the number of invocations (e.g. number of imports
in the code).

Predicting OSS Abandonment
Identifying inactive or abandoned OSSs could

be easily performed by directly checking for
the presence of specific tags on SourceForge1.
However, noticing such labeling would be too late
for a company to find proper alternatives. Thus, it
is necessary to find a way to foresee the potential
abandonment proactively.

Predicting the abandonment risk for a soft-
ware component is a multi-concern assurance
problem since it could depend on several aspects,
such as low performance, scarce maintainability,
etc. Commonly, an OSS is considered abandoned
just based on the number of commits performed

1https://sourceforge.net

on the system repository in a given time inter-
val [2], [11], [12]. Therefore, one could trivially
think to use this information as a sole predictor to
foresee the abandonment of an OSS component;
i.e., if the number of commits on a certain project
repository goes below a pre-defined threshold in
a certain period, then the component is consid-
ered abandoned. However, determining either the
threshold or the period length shall vary amongst
different practitioners.

Our case company considers an OSS project
as abandoned if it does not have any releases
or commits within the last six months, which
is comparatively a stricter threshold than that
suggested by Khondhu et al. [11]. Furthermore,
it is also possible that when an OSS community
does not focus on committing, the contributors are
still active in handling pull requests or discussing
the relevant issues. In this case, the suggestion
from our case company is that the measures
regarding committing (e.g., the daily number of
commits), communication (e.g., the daily issue
comments), and issue handling activities (e.g.,
daily closed pull requests) shall all be taken into
account. For the above reasons, we propose to
apply supervised techniques to predict the aban-
donment likelihood for a given OSS component
based on the aforementioned key activities (e.g.,
commits, issues, pull requests, etc.). This will
overcome the problem of subjective thresholds:
rather than relying on pre-defined strict thresh-
olds, these techniques can adapt the prediction to
the component under analysis.

In detail, to predict the abandonment of an
OSS component, we propose the following four-
step pipeline:

• Step 1. Data Crawling: We gather data from
all the 125486232 GitHub projects using the
GHTorrent dataset2.The selected metrics are:
#commits, #commit comments, #unique com-
mitters, #issues, #issue comments, #watchers,
#Open and closed Pull-Requests.

• Step 2. Data Preprocessing: We created train-
ing data for each OSS project that fulfill the
criteria specified by our case company, labeling
as active projects including 1) Commits >
2000, 2) Days of activity (from the created
day to the last commit day) > 1000, 3) At

2The GHTorrent Project https://ghtorrent.org

May/June 2022 3

https://sourceforge.net


Figure 1. Overview of the OSSARA process.

least 1 commit in the last 6 months, 4) Days
with 0 commits <= 50% of days of activity.
Furthermore, the labeled training data shall be
prepared based on the target prediction period
(e.g. one, two, or three months) with the proper
dimension of the data determined towards best
prediction accuracy.

• Step 3. Prediction: Using the labeled and
preprocessed data, we train the classifiers of
the best performance for the target prediction
periods. With the data of the target OSS com-
ponent as input, the classifier will predict if the
component is active or abandoned in the target
period. The accuracy of the classifier is used
as the probability of the OSS being active or
abandoned, as it indicates the probability the
prediction is correct.

Validation
To validate the proposed methodology, we

conduct a preliminary evaluation on 12208 OSS
projects3, which contain at least 1000 commits
from at least five unique contributors and are
watched by at least 100 users. Such selection
criteria assure the popularity and longevity of the
candidates. The dataset is extracted from GHTor-

3The dataset is shared at https://doi.org/10.6084/m9.figshare.
16944001.v1

rent dataset (till the 2019-06-01 dump) and la-
beled according to the aforementioned guidelines
(see Step 2). Among the four popular classifica-
tion algorithms we selected, i.e., Decision Tree,
Support Vector Machine, Logistic Regression,
and Naive Bayes, we find Logistic Regression
has the highest accuracy with the dataset. We
also apply a 10-fold cross-validation strategy to
assess the prediction capabilities of the model.
Results of such a validation report an F1 score
of ≈ 0.86 (±0.01 estimated error) with the
Matthews Correlation Coefficient (MCC) being
0.73; hence, we can conclude that the proposed
methodology is reliable enough.

Working Example
This section presents a working example of

the proposed method. For matters related to the
non-disclosure agreement with our case company,
we can not provide details about a real industrial
application of our technique. However, to demon-
strate the OSSARA model at work, we apply
the approach to an open-source software project
case. Herein, we take Keras as an example of
software developed in-house that needs to inte-
grate various OSS components. Keras is an OSS
project providing a Python-written deep learning
API for TensorFlow libraries. The release version

4 IEEE Software

https://doi.org/10.6084/m9.figshare.16944001.v1
https://doi.org/10.6084/m9.figshare.16944001.v1


adopted for our analysis is the Release 2.7.0 RC14

accessed on 2021-10-26 from Github.
We conduct our analysis only focusing on

the 536 Python files from the repository and
detect the OSS components (i.e., packages) im-
ported within each file. Furthermore, to ease the
computation as well as the explanation of the
results, we only consider the top 20 packages
most frequently imported in Keras. Herein, we
consider only the five most commonly imported
OSS components in Keras, namely, TensorFlow,
CPython, Numpy, abseil-py, and h5py. Packages,
e.g., re, random, collections, etc. all belong to
the Cpython component and will be considered
together. The weight of each component is thus
calculated by the percentage of files importing it.

Figure 2. Abandonment Risk Assessment for Keras

We conduct our analysis using three different
time frames to predict the abandonment risk of
embedded OSS components in one, two, and
three months. The same approach can also be
applied to longer time-frames. To simplify the
process, we quantify the weight of each imported
Python package counting the number of imports
for such package over all the project files. Figure
2 summarizes the results obtained in the three
considered time frames.

The results show that within one month all
components are safe from abandonment. When

4https://github.com/keras-team/keras/releases/tag/v2.7.0-rc1

considering a two-month time frame, the abseil-
py package appears to have a high risk of being
abandoned (i.e., 85.8%). Finally, as for the three-
month analysis, the risk that the h5py package
will be abandoned arises. The three key compo-
nents, namely TensorFlow, Cpython, and Numpy,
remain active throughout the period. Based on
our calculation, the overall abandonment risk for
Keras grows from 0.138 in one month to 0.215
in two months and 0.248 in three months. From
the repository history of abseil-py and h5py, we
can observe since 2020 both projects have had a
very low committing and issue-handling rate from
a small group of contributors, which legitimizes
the existence of such risks.

This demonstration example shows that the
OSSARA model can provide an intuitive predic-
tion of the abandonment risk of software sys-
tems that embed OSS components. However, this
oversimplified example aims only to explain how
our method works when the probability-based
conclusion may not reflect reality. Please note that
in this simplified example we did not consider
hierarchical relations. For example, the selected
20 packages might, in turn, use other components
that might have a high abandonment risk. Mean-
while, though the compliance to real industrial
needs from the case company is the main strength
of the model, the generalizability can be limited.
Furthermore, the potential application of the risk
prediction towards component replacement and
integration requires the support of assessment
methods on software engineering decision mak-
ing [13]. Last, other metrics might have different
prediction power for the abandonment risk.

Conclusion
Integrating abandoned OSSs in software-

intensive systems is hazardous and could re-
sult in severe consequences, which evokes the
concerns of practitioners. Especially when the
functions from abandoned components are in-
tegrated into the highly critical modules, the
consequences caused by abandoned OSSs that
are lacking maintenance can be unbearable. To
foresee such risks to raise awareness, we propose
the OSSARA model to provide an assessment
and prediction pipeline detecting such risks to
the integrated OSS components. The model also
provides potentials for continuous adaptation and

May/June 2022 5

https://github.com/keras-team/keras/releases/tag/v2.7.0-rc1


customization by which the practitioners can con-
duct continuously optimized prediction via up-to-
date OSS activity data with selectively effective
and even customized algorithms. The model has
been positively acknowledged by our case com-
pany which is currently adopting and integrating
it into their CI/CD pipeline, to highlight the
potential abandonment risk of embedded OSS
components and to take actions proactively by
notifying developers.

Future works shall be conducted towards the
exploration of other analysis techniques, the in-
clusion of other metrics in the prediction model,
the integration of the other types of OSS risk as-
sessment, e.g., security assessment, license com-
pliance assessment, etc., the dependency and hi-
erarchy analysis, and towards implementation and
potential industrialization.

REFERENCES

1. M. M. Lehman, “Programs, life cycles, and laws of

software evolution,” Proceedings of the IEEE, vol. 68,

no. 9, pp. 1060–1076, 1980.

2. I. Samoladas, L. Angelis, and I. Stamelos, “Survival

analysis on the duration of open source projects,” In-

formation and Software Technology, vol. 52, no. 9, pp.

902–922, 2010.

3. J. Businge, A. Serebrenik, and M. van den Brand,

“Survival of eclipse third-party plug-ins,” in 2012 28th

IEEE International Conference on Software Mainte-

nance (ICSM). IEEE, 2012, pp. 368–377.

4. J. Coelho, M. T. Valente, L. L. Silva, and E. Shihab,

“Identifying unmaintained projects in github,” in Pro-

ceedings of the 12th ACM/IEEE International Sympo-

sium on Empirical Software Engineering and Measure-

ment, 2018, pp. 1–10.

5. J. Coelho, M. T. Valente, L. Milen, and L. L. Silva, “Is this

github project maintained? measuring the level of main-

tenance activity of open-source projects,” Information

and Software Technology, vol. 122, p. 106274, 2020.

6. M. Valiev, B. Vasilescu, and J. Herbsleb, “Ecosystem-

level determinants of sustained activity in open-source

projects: A case study of the pypi ecosystem,” in Pro-

ceedings of the 2018 26th ACM Joint Meeting on

European Software Engineering Conference and Sym-

posium on the Foundations of Software Engineering,

2018, pp. 644–655.

7. S. Mujahid, D. E. Costa, R. Abdalkareem, E. Shihab,

M. A. Saied, and B. Adams, “Towards using package

centrality trend to identify packages in decline,” arXiv

preprint arXiv:2107.10168, 2021.

8. X. Li, S. Moreschini, Z. Zhang, and D. Taibi, “Exploring

factors and metrics to select open source software

components for integration: An empirical study,” Journal

of Systems and Software, vol. 188, p. 111255, 2022.

9. B. Boehm and C. Abts, “Cots integration: Plug and

pray?” Computer, vol. 32, no. 1, pp. 135–138, 1999.

10. B. Boehm, “Software risk management,” in European

Software Engineering Conference. Springer, 1989, pp.

1–19.

11. J. Khondhu, A. Capiluppi, and K.-J. Stol, “Is it all lost? a

study of inactive open source projects,” in IFIP interna-

tional conference on open source systems. Springer,

2013, pp. 61–79.

12. J. Coelho and M. T. Valente, “Why modern open source

projects fail,” in Proceedings of the 2017 11th Joint

meeting on foundations of software engineering, 2017,

pp. 186–196.

13. R. A. Ribeiro, A. M. Moreira, P. Van den Broek,

and A. Pimentel, “Hybrid assessment method for soft-

ware engineering decisions,” Decision Support Sys-

tems, vol. 51, no. 1, pp. 208–219, 2011.

Xiaozhou Li is a Ph.D. candidate in the Fac-
ulty of Information Technology and Communica-
tion Sciences, Tampere University, Finland. He
is a researcher at Cloud Software Evolution and
Assessment (CloudSEA) research group. His re-
search interests include open-source software
quality, software maintenance and evolution, user
review opinion mining, data-driven empirical soft-
ware engineering, computational game studies,
gamification design, etc.

Sergio Moreschini is a Ph.D. candidate in the
Faculty of Information Technology and Commu-

6 IEEE Software



nication Sciences, Tampere University, Finland.
He is a researcher at Cloud Software Evolution
and Assessment (CloudSEA) research group. His
main research interest focuses on extended light
field reconstruction for continuous parallax con-
tent. He also contributes actively to the domains
of empirical software engineering, open-source
software quality, data-driven software engineer-
ing, etc.

Fabiano Pecorelli is a researcher at Cloud
Software Evolution and Assessment (CloudSEA)
research group at Tampere University. He re-
ceived a bachelor’s and master’s degree in com-
puter science from the University of Salerno, Italy.
He is about to defend his Ph.D. dissertation at
the Department of Computer Science, University
of Salerno, under the supervision of Prof. Andrea
De Lucia. His research interests include software
code and test quality, predictive analytics, mining
software repositories, software maintenance and
evolution, and empirical software engineering. To
this aim, he applies several techniques such as
machine learning, search-based algorithms, and
mining of software repositories. He serves and
had served as a referee for various international
journals in the field of software engineering (e.g.,
TOSEM, EMSE, JSS).

Davide Taibi is Associate Professor at the
Tampere University (Finland) where he head
the Cloud Software Evolution and Assessment
(CloudSEA) research group. His research is
mainly focused on Empirical Software Engineer-
ing applied to cloud-native systems, with a spe-
cial focus on the migration from monolithic to
cloud-native applications. He is investigating pro-
cesses, and techniques for developing Cloud Na-
tive applications, identifying cloud-native specific

patterns and anti-patterns. He is member of the
International Software Engineering Network (IS-
ERN) from 2018. Before moving to Finland, he
has been Assistant Professor at the Free Univer-
sity of Bozen/Bolzano (2015-2017), post-doctoral
research fellow at the Technical University of
Kaiserslautern and Fraunhofer Institute for Exper-
imental Software Engineering - IESE (2013-2014)
and research fellow at the University of Insubria
(2007-2011).

May/June 2022 7


	Related Work
	Software Composition using OSS
	OSSARA Model
	Predicting OSS Abandonment
	Validation

	Working Example
	Conclusion
	REFERENCES
	Biographies

