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ABSTRACT

Code smells can compromise software quality in the long term by

inducing technical debt. For this reason, many approaches aimed

at identifying these design flaws have been proposed in the last

decade. Most of them are based on heuristics in which a set of

metrics (e.g., code metrics, process metrics) is used to detect smelly

code components. However, these techniques suffer of subjective

interpretation, low agreement between detectors, and threshold

dependability. To overcome these limitations, previouswork applied

Machine Learning techniques that can learn from previous datasets

without needing any threshold definition. However, more recent

work has shown that Machine Learning is not always suitable for

code smell detection due to the highly unbalanced nature of the

problem. In this study we investigate several approaches able to

mitigate data unbalancing issues to understand their impact on ML-

based approaches for code smell detection. Our findings highlight

a number of limitations and open issues with respect to the usage

of data balancing in ML-based code smell detection.
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1 INTRODUCTION

During software development strict deadlines and new require-

ments could lead to the introduction of technical debt [8], namely a

set of design issues that may negatively affect a system’s maintain-

ability in the future. Code smells [17] are one of the first indications
of code technical debt, i.e., sub-optimal design solutions that devel-

opers apply to a software system.

Code smells has been investigated from several perspectives

[3, 9]: their introduction [45, 46] and evolution [6, 31, 34], their

impact on reliability [38, 39] and maintainability [23, 35], as well

as the way developers perceive them [36, 44, 48] have been deeply

analysed in literature and have revealed that code smells represent

serious threats to source code maintenance and evolution.

For all these reasons, several techniques to automatically iden-

tify code smells in source code have been investigated [11, 30, 37].

These techniques rely on heuristics and discriminate code artefacts

affected (or not) by a certain type of smell through the application

of detection rules that compare the values of relevant metrics ex-

tracted from source code against empirically identified thresholds.

The accuracy of such approaches has been empirically assessed

and was found to be fairly high. Nevertheless, they share common

limitations that hinder their adoption in practice [11, 49]. First, they

could return code smell candidates that are not considered as ac-

tual problems by developers [13, 28]. Furthermore, the agreement

between detectors is very low [12], which means that different

detectors are required to detect the smelliness of different code

components. Finally, the performance of most of the current de-

tectors is strongly influenced by the thresholds needed to identify

smelly and non-smelly instances [11].

To overcome these limitations, researchers recently adopted ma-

chine learning (ML) to avoid thresholds and decrease the false

positive rate [14]: in this schema, a classifier is trained on previous

releases of the source code by exploiting a set of independent vari-

ables (e.g., structural, historical, or textual metrics). The resulting

model is employed to determine the presence of a smell or the de-

gree of smelliness of a code element. Although the use of machine

learning looks promising, previous work has observed contrasting

results [10, 14, 41]. Heuristic-based approaches perform slightly

better than machine learning approaches, thus indicating that Ma-

chine Learning is still unsuitable for code smell detection [41]. As

code smell detection is a highly unbalanced problem [10, 41], data

balancing is a key factor to improve the reliability of such models.

https://doi.org/10.1145/3340482.3342744
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Data balancing can be introduced in several ways by transforming

the training set or by using cost-sensitive classifiers.

In this paper, we propose a large-scale empirical study —that fea-

tures 125 releases, 13 software systems, and five code smell types—

in which we compare the performance of five data-balancing tech-

niques for code smell detection and compare their performance

with a no-balancing baseline. Our results suggest that models em-

ploying SMOTE realize the best performance but exhibit some lim-

itations related to the model training. Moreover, data balancing

does not dramatically improve the performance of the models. In

conclusion, further work is needed to improve the current ML-

based approaches to code smell detection, primarily to improve the

quality of the training set on which the models are trained.

Structure of the paper. Section 2 discusses the literature re-

lated to ML-based code smell detection. Section 3 describes the

design of the empirical study, while Section 4 analyses the achieved

results. Section 5 sketches the possible threats affecting our findings.

Finally, Section 6 concludes the paper.

2 RELATEDWORK

Machine learning has been used in several recent works on code

smell detection [3]. Kreimer [26] proposed a prediction model based

on Decision Trees and code metrics to detect two code smells (i.e.,

Blob and Long Method). This model can lead to high values of accu-

racy. Later on, Amorim et al. [1] confirmed the previous findings on

four medium-scale open-source projects. Vaucher et al. [47] studied

Blob’s evolution relying on a Naive Bayes classifier, whereas Maiga

et al. [27] proposed the use of Support Vector Machine (SVM). The

use of Bayesian Belief Networks to detect Blob, Functional Decom-
position, and Spaghetti Code instances on open-source programs,

proposed by Khomh et al. [24] lead to an overall F-Measure close

to 60%. Similarly, Hassaine et al. [20] defined an immune-inspired

approach for the detection of Blob smells, while Oliveto et al. [32]

used B-Splines to detect them. Arcelli Fontana et al. made the most

relevant progress in this field [14–16]. In their work, they (i) the-

orised that ML might lead to a more objective evaluation of the

smells’ hazardousness [16], (ii) provided a ML method to assess

code smell intensity [15], and (iii) compared 16 ML techniques for

the detection of four code smell types [14] showing that ML can

lead to F-Measure values close to 100%. Nevertheless, recently Di

Nucci et al. [10] demonstrated that, in a real use-case scenario, the

results achieved by Arcelli Fontana et al. [14] cannot be generalised,

thus casting doubt on the actual effectiveness of machine learn-

ing for code smell detection. Finally, Pecorelli et al. [41] compared

ML-based and heuristic metric-based approaches to assess the real

capabilities of ML in the context of code smell detection show-

ing that heuristic techniques for code smell detection still perform

slightly better.

3 STUDY DESIGN

The purpose of this study is to understand the impact of data bal-

ancing techniques on the performance of Machine Learning (ML)

algorithms in code smell detection. In particular, we aim to address

the following research questions:

RQ1. Do data balancing techniques impact the performance of

Machine Learning algorithms in code smell detection?

Table 1: Descriptive statistics for smells distribution

Code Smell min mean median max total

God Class 0 5.5 4 24 509

Spaghetti Code 0 12.7 11 31 1443

Class Data Should Be Private 0 11.4 11 37 1150

Complex Class 0 6.4 4 20 669

Long Method 3 48.3 26 147 4763

RQ2. Which data balancing technique is the most effective at im-

proving the performance of Machine Learning algorithms

in code smell detection?

3.1 Context of the Study

The context of the study consisted of 125 releases of 13 open-source
software systems [33]. We relied on the same dataset and the same

lists of code smells that we used in our previous study [41] in which

we compared heuristic- and ML-based techniques for code smell

detection. The dataset is also available in our online appendix [40].

The projects are heterogenous since they have different sizes,

lifetimes, and belong to different application domains. The main

characteristics of the considered projects are reported in the online

appendix [40], as well as in the previous study [41]. Note that the

dataset is not composed of artificially crafted code smell instances

but ofmanually validated ones (i.e., 8, 534). The distribution of code

smells in the dataset is reported in Table 1. The low median number

of code smells in each considered release clearly demonstrates that

code smell detection is a highly unbalanced problem.We considered

five different types of code smells defined by Fowler [17]:

• God Class. This smell characterises classes having a large

size, poor cohesion, and several dependencies with other data

classes of the system [17]. Previous work showed that this

smell has a negative impact on both program comprehension

and software maintainability [23, 33].

• Spaghetti Code. Classes affected by this smell declare a num-

ber of long methods without parameters [17]. For this smell

too, the negative impact on comprehensibility and maintain-

ability has previously been shown [23, 33].

• Class Data Should be Private. This smell appears in cases

where a class exposes its attributes, thus violating the infor-

mation hiding principle [17]; for this smell, previous work

has shown that developers often do not recognise its pres-

ence and consider it as less harmful than others to maintain-

ability [36, 44].

• Complex Class. Classes presenting a overly high cyclomatic

complexity [29] are affected by this design flaw. As shown

in the literature [23, 33, 36], it can worsen software main-

tainability and reduce the ability of developers to properly

enhance the corresponding source code.

• Long Method. Methods implementing more than one func-

tionality are affected by this smell [17]. It can lower program

understanding and make the source code more change- and

fault-prone [23, 33, 36].
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3.2 Experimental Design

The goal of the experiment was to compare the performance of

different data balancing techniques. To this aim we configured

five different ML variants based on the Naive Bayes classifier [22]

which in our previous study [41] performed the best in code smell

detection. Before creating the model we applied a Feature Selection

step by using Correlation-based Feature Selection (CFS) [19]

to remove highly correlated independent variables. We tuned the

hyper-parameters of the classifier by applying the Grid Search

algorithm [5]. Thus, the only difference in the models consisted

in the way in which we balanced the training set. Data balancing

can be introduced by transforming the training set or by using

meta-classifiers (e.g., cost-sensitive classifiers). In the latter case,

the cost sensitivity can be introduced in a two-fold manner. On

the one hand, the training instances can be re-weighted according

to the total cost assigned to each class, i.e., the cost-sensitivity

is considered during the training phase. On the other hand, the

class with the minimum expected misclassification cost rather than

the most likely class can be predicted, i.e., the cost-sensitivity is

introduced in the testing phase. In this experiment, we employed

five different techniques:

• Class Balancer [18] re-weights the instances of the training
set so that the sum of the weights for each class of instances

in the dataset is equal.

• Resample produces a random subsample of the dataset using

either sampling with replacement or without replacement.

In our experiment we sampled by replacing instances of the

majority class (i.e., clean classes) with instances from the

minority class (i.e., smelly classes) until obtaining an even

number of instances for both classes.

• Synthetic Minority Over-sampling TEchnique [7] increases the
number of instances from the minority class by generating

new synthetic instances based on the nearest neighbours

belonging to that class.

• Cost Sensitive Classifier [25] is a meta-classifier that renders

a cost-sensitive version of the base classifier. Specifically, we

relied on implementation provided byWeka [18].

• One Class Classifiers [21] are trained only on the samples

belonging to the minority class to learn the unique features

of this class and accurately identify an unseen sample of

this class as distinct from a sample of any other class. All

instances belonging to other classes are identified as outliers.

Finally, to answer RQ1, we trained the models without applying

any data balancing technique (i.e., No-balancing).

Table 2: Full Names of the Considered Metrics.

Acronym Full Name Code Smells

ELOC Effective Lines Of Code God Class, Spaghetti Code

LCOM Lack of COhesion in Methods God Class

LOC_METHOD Lines Of Code of METHOD Long Method

NOA Number Of Attributes God Class

NOM Number Of Methods God Class

NOPA Number Of Public Attributes Class Data Should Be Private

NP Number of Parameters Long Method

NMNOPARAM Number of Methods with NO PARAMeters Spaghetti Code

WMC Weighted Methods Count God Class, Complex Class

As independent variables we considered only code metrics that

are related to code features of the software instances (e.g., size,

complexity). For the detection of each Code Smell, we exploited

the set of metrics originally adopted by Moha et al. [30]. Table 2

reports the entire list of metrics used as independent variables and

for which code smell have been used.

Since we were interested in detecting code smells, we set the

presence/absence of a certain code smell as dependent variable of
the machine learning model. This information was already available

in the considered dataset.

To assess the capabilities of the machine learning model, we

adopted 10-Fold Cross Validation [43]. This methodology randomly

partitions the data into 10 folds of equal size, applying a stratified

sampling (e.g., each fold has the same proportion of code smell

instances). A single fold is used as test set, while the remaining

ones are used as training set. The process was repeated 10 times,

using each time a different fold as test set. The result of the process

described above consisted of a confusion matrix for each code

smell type, for each of the 125 releases of the considered projects,

and for each experimented classifier. These matrices have been

later analysed to measure the evaluation metrics described in the

following parts of the section.

3.3 Evaluation Metrics

To assess the performance of the experimented detection techniques

we computed four well-known metrics [4, 42], namely, precision,
recall, F-Measure, andMatthews Correlation Coefficient (MCC). Since
we considered several releases of several systems, we needed to

aggregate the results achieved for each release to have a clearer

overview of the performance [2]. We discuss the results in terms of

MCC because this metric provides a better overview with respect

to the other metrics by considering all the confusion matrix. There-

fore, we first computed the confusion matrix for each release on

which we detected code smells. Then, we aggregated the confusion

matrices ranging over all the releases of a software system and we

computed the above metrics. Aggregate metrics are more robust

than the mean, which is biased by the fact that datasets are unbal-

anced for different smell types in terms of smelly and non smelly

instances.

4 STUDY RESULTS

We report the results of the experiments for each code smell.

4.1 God Class

By and large, all the balancing techniques, except One Class Classi-
fier, are able to detect most of the God Class instances, as inferable
from the high values for recall (0,83 to 0,93). However the low pre-

cision indicates that, the considered balancing techniques do not

help in reducing the high number of false positives. Indeed, only

SMOTE has a slightly higher precision (only 1%) than No-balancing.
We can notice similar results when analysing the MCC and the

boxplot in Figure 1. It is important to note that the performance of

No-balancing is very close to that obtained by SMOTE and clearly

better than the other balancing techniques.

4.2 Complex Class

In case of Complex Class, the results are discordant. In particu-

lar, ClassBalancer, Resample, and CostSensitiveClassifier show very
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Figure 1: Boxplots representing the MCC values obtained by Naive Bayesian trained applying different balancing strategies

for all the considered code smells

Table 3: Aggregate Results for God Class

God Class

Precision Recall F-measure MCC

No-balancing 0.25 0.83 0.39 0.45

ClassBalancer 0.18 0.92 0.30 0.41

SMOTE 0.26 0.93 0.41 0.49

Resample 0.17 0.90 0.28 0.39

CostSensitiveClassifier 0.19 0.85 0.31 0.39

OneClassClassifier 0.19 0.51 0.27 0.30

low results in terms of precision and high recall. Contrarily, No-
balancing and SMOTE show slightly higher precision and lower

recall while OneClassClassifier has bad precision and bad recall. As

for God Class, SMOTE is the best techniques in terms of F-measure

and MCC but the performance is close to the one obtained without

applying any balancing. Figure 1 confirms that SMOTE achieves

the best performance for Complex Class. Indeed, the boxplot for
SMOTE has the highest median and the lowest Interquartile Range,

which means that its results are more reliable.

Table 4: Aggregate Results for Complex Class

Complex Class

Precision Recall F-measure MCC

No-balancing 0.23 0.58 0.33 0.36

ClassBalancer 0.14 0.85 0.24 0.34

SMOTE 0.26 0.65 0.37 0.4

Resample 0.14 0.84 0.24 0.33

CostSensitiveClassifier 0.12 0.74 0.20 0.29

OneClassClassifier 0.06 0.65 0.11 0.19

4.3 Class Data Should Be Private

Table 5 reports the results for Class Data Should Be Private. Com-

pared to the other smells, the moderately higher precision is coun-

tered by the general lower recall. Class Balancer shows the highest
values for F-Measure and MCC and the boxplots in Figure 1 confirm

that this technique should be applied for this kind of smell.

4.4 Spaghetti Code

The results show that this is the hardest smell to detect, with respect

to the other four considered smells. The MCC values range between

Table 5: Aggregate Results for Class Data Should Be Private

Class Data Should Be Private

Precision Recall F-measure MCC

No-balancing 0.3 0.33 0.31 0.31

ClassBalancer 0.23 0.55 0.33 0.35

SMOTE 0.27 0.33 0.30 0.29

Resample 0.21 0.54 0.31 0.33

CostSensitiveClassifier 0.07 0.55 0.12 0.17

OneClassClassifier 0.01 0.71 0.03 0.05

0,03 (i.e., OneClassClassifier) and 0,22 (i.e., SMOTE). As for the other
metrics (i.e., Precision, Recall, F-Measure), the results are very poor

compared to the ones obtained on other code smells. Overall, the

higher F-Measure and MCC of SMOTE suggest that it is the best

balancing technique.

Table 6: Aggregate Results for Spaghetti Code

Spaghetti Code

Precision Recall F-measure MCC

No-balancing 0.16 0.30 0.21 0.21

ClassBalancer 0.09 0.56 0.15 0.20

SMOTE 0.16 0.34 0.22 0.22

Resample 0.08 0.56 0.15 0.20

CostSensitiveClassifier 0.04 0.54 0.08 0.13

OneClassClassifier 0.01 0.72 0.02 0.03

4.5 Long Method

Long Method is a method-level code smell, so the number of anal-

ysed instances is higher than the other considered smells. This

could explain the very low precision values shown in Table 7. In-

deed, although the recall is quite high for all techniques, F-Measure

and MCC are very low. Figure 1 confirms that No-balancing and

SMOTE are the most accurate balancing techniques for this smell.

4.6 Discussion

The results show that the current ML-based approaches for code

smell detection are quite limited independently from the balancing

technique used (MCC < 0, 50). Overall, SMOTE seems to have better

performance, however, after analysing the results, we discovered a

common but often not clearly stated limitation of this technique. It
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Figure 2: Boxplots representing the MCC values obtained by Naive Bayesian trained applying different balancing strategies

for all the considered code smells and excluding NaN values

Table 7: Aggregate Results for Long Method

Long Method

Precision Recall F-measure MCC

No-balancing 0.15 0.56 0.23 0.28

ClassBalancer 0.05 0.74 0.10 0.19

SMOTE 0.12 0.58 0.20 0.26

Resample 0.05 0.74 0.10 0.19

CostSensitiveClassifier 0.06 0.71 0.11 0.19

OneClassClassifier 0.00 0.80 0.01 0.01

fails to balance the dataset when the number of smelly instances is

small. In particular, SMOTE requires at least k smelly instances and

if these are not available then the algorithm fails.

Aware of this limitation, we analysed the percentage of failures

for all the techniques and noticed that in ≈ 11% of cases SMOTE is

not able to balance the training set. This represents a clear disadvan-

tage with respect to the other techniques. Based on this observation,

we removed all these "boundary" cases and re-computed the box-

plots. Figure 2 shows that, in contrast to the previous analysis,

No-balancing performs better than all the other techniques. Thus,

the results suggest that the current data balancing techniques are

not adequate for code smell detection, posing several questions

on the feasibility of current ML-based approaches. An interesting

outcome concerns the very bad performance of OneClassClassifier
that usually provides good performance when applied on unbal-

anced problems. Our explanation is that in this case, it is not able

to realize an effective training due to the extremely low number of

"target" instances (i.e., smelly instances).

5 THREATS TO VALIDITY

Possible threats to validity are within Construct Validity, External
Validity, and Conclusion Validity.

Construct Validity. The dataset choice is a threat. We relied on

a dataset from a previous study [41] that was created consider-

ing several factors such as heterogeneity. The dataset has been

manually-validated, but we have to consider that it may be incom-

plete as well as imprecise. Another threat is the construction of the

machine-learning models, for which we took several aspects into

account that could have possibly influenced the study, i.e., which

features to consider, how to train the classifier, etc. However, the

procedures followed in this respect are precise enough to ensure

the validity of the study.

External Validity. We considered a large dataset consisting of 125

releases of 13 open source systems belonging to different application

domains and having different characteristics. As for the code smells,

we selected five smells that represent a large variety of design issues.

Although in a previous study [41] Naive Bayes outperformed the

otherML algorithms, the choice of this technique could be a possible

threat to validity. For both previous threats, further experiments

on different datasets and techniques would be desirable and are

already part of our future research agenda.

Conclusion Validity. We exploited a set of widely-used metrics

to evaluate the experimented techniques (i.e., precision, recall, F-

measure, MCC). As for the machine learning model, a possible bias

might have been due to the usage of 10-fold cross validation. This

strategy randomly partitions the set of data to create training and

test sets: such randomness might have possibly led to the creation

of biased training/test sets that have the consequence of under- or

over-estimating the model performance.

6 CONCLUSION

In this paper, we have reported on a large-scale empirical compari-

son between five different balancing techniques for ML-based code

smell detection. The study considered five code smell types in a

manually-validated dataset comprising 125 releases belonging to

13 open source systems.

The results suggest that MLmodels relying on SMOTE realize the

best performance. However, its training phase is not always feasible

in practice. Furthermore, avoiding balancing does not dramatically

impact the performance. Existing data balancing techniques are

therefore inadequate for code smell detection. This hinders the

feasibility of the current ML-based approaches.

Our future work includes devising new techniques for data bal-

ancing, as well as understanding how other configurations (e.g.,

Parameter Tuning, Feature Selection) impact the quality of the pre-

dictions. Finally, we aim to investigate novel techniques to compose

the training sets on which to train the models.
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