
A Preliminary Study on the Adequacy of Static Analysis
Warnings with Respect to Code Smell Prediction

Savanna Lujan,
1
* Fabiano Pecorelli,

2
* Fabio Palomba,

2
Andrea De Lucia,

2
Valentina Lenarduzzi

3

1
Tampere University, Finland —

2
SeSa Lab, University of Salerno, Italy —

3
LUT University, Finland

savanna.lujan@tuni.fi,fpecorelli@unisa.it,fpalomba@unisa.it,adelucia@unisa.it,valentina.lenarduzzi@lut.fi

ABSTRACT
Code smells are poor implementation choices applied during soft-

ware evolution that can affect source code maintainability. While

several heuristic-based approaches have been proposed in the past,

machine learning solutions have recently gained attention since

they may potentially address some limitations of state-of-the-art

approaches. Unfortunately, however, machine learning-based code

smell detectors still suffer from low accuracy. In this paper, we aim

at advancing the knowledge in the field by investigating the role of

static analysis warnings as features of machine learning models for

the detection of three code smell types. We first verify the potential

contribution given by these features. Then, we build code smell

prediction models exploiting the most relevant features coming

from the first analysis. The main finding of the study reports that

the warnings given by the considered tools lead the performance

of code smell prediction models to drastically increase with respect

to what reported by previous research in the field.

KEYWORDS
Code Smells, Static Analysis Tools, Machine Learning.

ACM Reference Format:
Savanna Lujan,

1
* Fabiano Pecorelli,

2
* Fabio Palomba,

2
Andrea De Lucia,

2

Valentina Lenarduzzi
3
. 2020. A Preliminary Study on the Adequacy of Static

Analysis Warnings with Respect to Code Smell Prediction. In MaLTeSQuE
2020: International Workshop on Machine Learning Techniques for Software
Quality Evaluation, November 13, 2020 - Sacramento, USA. ACM, New York,

NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
During software maintenance and evolution, developers contin-

uously modify source code to fix defects, enhance existing func-

tionalities or adapt the system to new environments [22]. In such

a context, the need of delivering the system in a timely manner

often leads developers to set aside good design and implementa-

tion solutions and apply modifications that potentially cause the

introduction of the so-called technical debt [8]: this is a metaphor

introduced to explain, in more practical terms, the compromise be-

tween delivering fast and producing high-quality code. One of the

*Lujan and Pecorelli must be both considered as first authors of the paper.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MaLTeSQuE 2020, November 13, 2020, Sacramento, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

most relevant forms of technical debt is represented by code smells
[16], i.e., symptoms of the presence of sub-optimal implementation

solutions. Complex classes or overly long methods are just two

examples of code smells that often arise in practice [30]. Previous

research has shown that code smells hinder program comprehensi-

bility [1], increase source code change- and fault-proneness [19, 30],

and increase maintenance effort [37]. These reasons have inspired

the research effort around the definition of automatic solutions to

detect code smells in source code [9]. While a number of heuristic-

based techniques, relying on different types of software metrics,

have been devised (e.g., [27, 29, 32]), a recent trend is represented by

the use of machine learning approaches [4]. In particular, machine

learning has the potential to address some common limitations of

heuristic-based approaches: (1) the subjectivity with which their

output is interpreted by developers [14, 28], (2) the need of defining

thresholds for the detection [15], and (3) the low agreement among

them [13]. Indeed, machine learning may be exploited to combine

multiple metrics, learning code smell instances considered relevant

by developers without the specification of any threshold [4].

Despite this potential, however, machine learning models for

code smell detection have still low capabilities [11], especially due

to (1) the little contributions given by the features investigated so

far [34] and (2) the limited amount of code smell instances available

to train a machine learner in an appropriate manner [33].

In this paper, we focus on the first problem: we aim at advancing

the state of the art in machine learning for code smell detection by

focusing on the contribution given by the warnings of automated

static analysis tools to the classification capabilities. The motivation

behind our study is twofold. On the one hand, static analysis tools

provide indications about the quality of source code [43], hence

being potentially useful to characterize code smell instances. On

the other hand, their usage in practice is threatened by the high

amount of false positives they output [18]: to deal with it, new

instruments able to incorporate static analysis warnings within

smarter solutions may represent an interesting use case to make

static analysis tools more useful in practice.

Driven by these motivations, we first investigate the potential

contribution given by individual types of warnings output by three

static analysis tools, i.e., Checkstyle, FindBugs, and PMD, to the

prediction of three code smell types, i.e., God Class, Spaghetti Code,
andComplex Class. Then, we used themost relevant features coming

from the first analysis to build and assess the capabilities of ma-

chine learning models when detecting the three considered smells.

The key results of the study highlight promising results: models

built using the warnings of individual static analysis tools score

between 55% and 91% in terms of F-Measure. The warning types

that contribute the most to the performance of the learners depend

on the specific code smell considered.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MaLTeSQuE 2020, November 13, 2020, Sacramento, USA Lujan, Pecorelli et al.

2 RESEARCH METHODOLOGY
In our study, we defined the following research questions (RQ𝑠):

RQ1 Which warning categories contribute the most to the pre-
diction of code smells?

RQ2 To what extent can static analysis warnings output by
different tools predict the presence of code smells?

More specifically, RQ1 represents a preliminary research ques-

tion in which we aim at quantifying whether and to what extent

each warning category of the considered tools is relevant for the

task of code smell prediction. In RQ2, instead, we assess the actual

capabilities of a machine learner built using the relevant features

coming from the previous research question when predicting the

presence of code smells in source code; to this aim, we create indi-

vidual models, i.e., one for each static analyzer considered.

Table 1: Software systems considered in the project.

Project Description # Classes # Methods
Ant 1.8.3 Build system 1,218 11,919

Cassandra 1.1.0 Database Management Sys-

tem

727 7,901

Eclise JDT 3.4.0 Integrated Development En-

vironment

5,736 51,008

HSQLDB 2.0.0 HyperSQL Database Engine 601 11,016

Xerces 2.0.0 XML Parser 542 6,126

2.1 Context of the Study
The context of the study is composed of software projects, static

analysis tools, and code smells.

2.1.1 Selected Projects. The study considered five large open-

source software projects, whose characteristics are reported in

Table 1. The systems have different size and scope, hence allowing

us to understand whether these factors have an influence on the

results. It is important to point out that, we aim at providing pre-

liminary insights into the adequacy of static analysis warnings for

code smell detection: a larger-scale analysis is part of our future

research agenda.

2.1.2 Selected Tools. To detect static analysis tool warnings, we

selected three tools, namely Checkstyle, Findbugs, and PMD. The

selection of these tools is driven by recent findings that showed

that these are among the static analysis tools more employed in

practice by developers [24, 41, 42]. In the following, we report a

brief description of each tool.

Checkstyle. Checkstyle is an open-source developer tool that

evaluates Java code according to a certain coding standard, which is

configured according to a set of “checks”. These checks are classified

under 14 different categories, are configured according to the coding

standard preference, and are grouped under two severity levels:

error and warning. More information regarding the standard checks

can be found from the Checkstyle web site.
1

Findbugs. Findbugs is another commonly used static analysis

tool for evaluating Java code, more precisely Java bytecode. The

1
https://checkstyle.sourceforge.io

analysis is based on detecting “bug patterns”, which arise for various

reasons. Such bugs are classified under 9 different categories, and

the severity of the issue is ranked from 1-20. Rank 1-4 is the scariest
group, rank 5-9 is the scary group, rank 10-14 is the troubling group,
and rank 15-20 is the concern group.

2

PMD. PMD is an open-source tool that provides different stan-

dard rule sets for major languages, which can be customized by

the users, if necessary. PMD categorizes the rules according to five

priority levels (from P1 “Change absolutely required” to P5 “Change

highly optional”). Rule priority guidelines for default and custom-

made rules can be found in the PMD project documentation.
3

2.1.3 Selected code smells. The study considers three class-level

code smell types, such as:

• God Class. This smell generally appears when a class is

large, poorly cohesive, and has a number of dependencies

with other data classes of the system [16].

• Spaghetti Code. Instances of this code smell arise when

a class does not properly use Object-Oriented program-

ming principles (e.g., inheritance), declares at least one long

method with no parameters, and uses instance variables [5].

• Complex Class. As the name suggests, instances of this

smell affect classes that have high cyclomatic complexity

[26] and that, therefore, may primarily make the testing of

those classes harder [16].

The selection of these smells was driven by two main observa-

tions. Firstly, previous studies have connected them to an increase

of change- and fault-proneness of source code [6, 19, 30] as well as

maintenance effort [37]. Secondly, these smells are highly relevant

for developers that, indeed, often recognize them as harmful for

the evolvability of software projects [28, 38, 45, 46].

2.2 Data Collection
The data collection phase aimed at gathering information related to

independent and dependent variables of our study. These concern

with the collection of static analysis warnings from the selected

analyzer, which will represent the features to be used in the ma-

chine learner, and the labeling of code smell instances, namely the

identification of real code smells affecting the considered systems.

2.2.1 Collecting static analysis tool warnings. This step differs

based on the static analysis tool considered, as each of them has a

different process to be executed.

Checkstyle. The jar file for the Checkstyle analysis was

downloaded directly from the Checkstyle’s website
4
in order to

engage the analysis from the command line. The executable JAR file
used in this case was checkstyle-8.30-all.jar. In addition to

downloading the JAR executable, Checkstyle offers two different

types of rule sets for the analysis. For each of the rule sets, the con-

figuration file was downloaded directly from Checkstyle’s website.
5

In order to start the analysis, the files checkstyle-8.30-all.jar
and the configuration file in question were saved in the directory

where all the projects resided.

2
http://findbugs.sourceforge.net/findbugs2.html

3
https://pmd.github.io/latest/

4
https://checkstyle.org/#Download

5
https://github.com/checkstyle/checkstyle/tree/master/src/main/resources

https://checkstyle.sourceforge.io
http://findbugs.sourceforge.net/findbugs2.html
https://pmd.github.io/latest/
https://checkstyle.org/#Download
https://github.com/checkstyle/checkstyle/tree/master/src/main/resources

A Preliminary Study on the Adequacy of Static Analysis Warnings with Respect to Code Smell Prediction MaLTeSQuE 2020, November 13, 2020, Sacramento, USA

Findbugs. FindBugs 3.0.1 was installed by running the brew
install findbugs in the command line. Once installed, the GUI

was then engaged by writing spotbugs. From the GUI, the analysis

was executed through File → New Project. The classpath for the

analysis was identified to be the location of the project directory.

Moreover, the source directories were identified to be the project

JAR executable. Once the class path and source directories were

identified, the analysis was engaged by clicking Analyze in the

GUI. Once the analysis finished, the results were saved through

File → Save as using the XML file format. The main specifications

were the "Classpath for analysis (jar, ear, war, zip, or directory)" and

"Source directories (optional; used when browsing found bugs)"

where the project directory and project jar file were added.

PMD. PMD 6.23.0 was downloaded from GitHub
6
as a zip file.

After unzipping, the analysis was engaged by identifying several

parameters: project directory, export file format, rule set, and export

file name. In addition to downloading the zip file, PMD offers 32

different types of rule sets for Java.
7
All 32 rule sets were used

during the configuration of the analysis.

Using these procedures, we ran the three static analysis tools

against the source code of the considered systems. At the end of the

analysis, these tools extracted a total of 60,904, 4,707, and 179,020

warnings for Checkstyle, FindBugs, and PMD respectively.

Table 2: Descriptive statistics about the number of code
smell instances.

Code Smell Min. Median Mean Max.
God Class 1.00 6.00 8.60 25.00

Complex Class 0.00 4.00 13.40 54.00

Spaghetti 2.00 26.00 18.00 30.00

2.2.2 Collecting information on actual code smell instances. This
stage consisted of identifying real code smells in the considered

software projects. While some previous studies relied on automated

mechanisms for this step, e.g., by usingmetric-based detectors [2, 20,

25], recent findings showed that such a procedure could threaten

the reliability of the dependent variable and, as a consequence,

of the entire machine learning model [10]. Hence, in our study

we preferred a different solution, namely considering manually-

validated code smell instances. In particular, for all the systems

considered, there exist a publicly available dataset reporting actual

code smell instances [31] which has been also used in more recent

studies evaluating the performance of machine learning models

for code smell detection [30, 33, 34]. For each code smell, Table 2

reports the distribution of the code smells in the dataset.

2.3 Data Analysis
In this section, we report the methodological steps conducted to

address our research questions.

6
https://github.com/pmd/pmd/releases/download/pmd_releases%2F6.23.0/pmd-

bin-6.23.0.zip

7
https://github.com/pmd/pmd/tree/master/pmd-java/src/main/resources/

rulesets/java

2.3.1 RQ1. Contribution of static analysis warnings in code smell
prediction. In the first RQ, we assessed the extent to which the var-

ious warning categories of the considered static analysis tools can

potentially impact the performance of a machine learning-based

code smell detector. To this aim, we employed an information gain

algorithm [36], and particularly the Gain Ratio Feature Evaluation
technique, to establish a ranking of the features according to their

importance for the predictions done by the different models. Given

a set of features F = {𝑓1, ..., 𝑓𝑛} belonging to the model𝑀 , the Gain
Ratio Feature Evaluation computes the difference, in terms of Shan-

non entropy, between the model including the feature 𝑓𝑖 and the

model that does not include 𝑓𝑖 as independent variable. The higher

the difference obtained by a feature 𝑓𝑖 , the higher its value for the

model. The outcome of the algorithm is represented by a ranked

list, where the features providing the highest gain are put at the

top. This ranking was used to address RQ1.

2.3.2 RQ2. The role of static analysis warnings in code smell pre-
diction. Once we had investigated which warning categories relate

the most to the presence of code smells, in RQ2 we proceeded with

the definition of machine learning models.

Specifically, we defined a feature for each warning type raised

by the tools, where each feature contained the number of violations

of that type identified in a class. For instance, suppose that for a

class C𝑖 Checkstyle identifies seven violations to the warning type

called “Bad Practices": the machine learner is fed with the integer

value “7" for the feature “Bad Practices" computed on the class C𝑖 .

The dependent variable is, instead, given by the presence/absence

of a certain code smell. This implies the construction of threemodels

for each tool, i.e., for God Class, Spaghetti Code, and Complex Class,
respectively. Overall, we therefore built nine models per project -

one for each code smell/static analysis tool pair.

As for the supervised learning algorithm, the literature in the

field still misses a comprehensive analysis of which algorithmworks

better in the context of code smell detection [4]. For this reason,

we experimented with multiple classifiers such as J48, Random For-
est, Naive Bayes, Support Vector Machine, and JRip. When training

these algorithms, we followed the recommendations provided by

previous research [4, 39] to define a pipeline dealing with some

common issues in machine learning modeling. Particularly, we ex-

ploit the output of the Gain Information algorithm—used in the

context of RQ1—to discard unrelevant features that can bias the

interpretation of the models [39]: we did that by excluding the

features not providing any information gain. We also configured

the hyper-parameters of the considered machine learners using

the MultiSearch algorithm, which implements a multidimensional

search of the hyper-parameter space to identify the best configura-

tion of the model based on the input data. Finally, we considered

the problem of data balancing: it has been recently explored in

the context of code smell prediction [33] and the reported findings

showed that data balancing may and may not be useful to improve

the performance of a model. Hence, before deciding on whether to

apply data balancing, we benchmarked (i) Class Balancer, which is

an oversampling approach (ii) Resample, an undersampling method

(iii) Smote, an approach including synthetic instances to oversample

the minority class, and (iv) NoBalance, namely the application of

no balancing methods.

https://github.com/pmd/pmd/releases/download/pmd_releases%2F6.23.0/pmd-bin-6.23.0.zip
https://github.com/pmd/pmd/releases/download/pmd_releases%2F6.23.0/pmd-bin-6.23.0.zip
https://github.com/pmd/pmd/tree/master/pmd-java/src/main/resources/rulesets/java
https://github.com/pmd/pmd/tree/master/pmd-java/src/main/resources/rulesets/java

MaLTeSQuE 2020, November 13, 2020, Sacramento, USA Lujan, Pecorelli et al.

After training the models, we proceeded with the evaluation of

their performance. We applied a 10-fold cross-validation: with this

strategy, the dataset (including the training set) was divided in 10

parts respecting the proportion between smelly and non-smelly

elements. Then, we trained for ten times the models using 9/10

of the data, retaining the remaining fold for testing purpose—in

this way, we allowed each fold to be the test set exactly once. For

each test fold, we evaluated the models by computing a number

of performance metrics, such as precision, recall, F-Measure, AUC-

ROC, and Matthews Correlation Coefficient (MCC).

3 RESULTS AND DISCUSSION
In the following, we discuss the results addressing our research

questions.

Table 3: Information Gain of our independent variables for
each static analysis tool.

Checkstyle FindBugs PMD
Code Smell Metric Mean Metric Mean Metric Mean

God Class

Imports 0.42 Performance 0.10 Error Prone 0.05

Blocks 0.34 Style 0.06 Design 0.03

Javadoc 0.12 I18N 0.00 Code Style 0.03

Design 0.11 Correctness 0.00 Multithreading 0.02

Indentation 0.09 Experimental 0.00 Documentation 0.02

0ming 0.08 Malicious Code 0.00 Performance 0.01

Coding 0.04 Security 0.00 Best Practices 0.01

Checks 0.03 MT Correctness 0.00 — —

Sizes 0.01 Bad Practice 0.00 — —

Whitespace 0.01 — — — —

Modifier 0.00 — — — —

Regexp 0.00 — — — —

Complex Class

Regexp 0.45 Style 0.07 Design 0.06

Checks 0.05 Performance 0.04 Error Prone 0.05

Coding 0.03 Correctness 0.02 Code Style 0.04

Blocks 0.03 I18N 0.00 Documentation 0.03

Javadoc 0.02 Experimental 0.00 Performance 0.03

Indentation 0.02 Malicious Code 0.00 Best Practices 0.02

Design 0.01 Security 0.00 Multithreading 0.01

0ming 0.01 MT Correctness 0.00 — —

Sizes 0.01 Bad Practice 0.00 — —

Modifier 0.00 — — — —

Imports 0.00 — — — —

Whitespace 0.00 — — — —

Spaghetti Code

Javadoc 0.04 Security 0.40 Error Prone 0.04

Design 0.04 Performance 0.06 Design 0.02

Indentation 0.03 Style 0.06 Code Style 0.02

Coding 0.03 I18N 0.03 Multithreading 0.02

Checks 0.02 Experimental 0.00 Performance 0.01

0mings 0.02 Correctness 0.00 Best Practices 0.01

Imports 0.00 Malicious Code 0.00 Documentation 0.01

Whitespace 0.00 MT Correctness 0.00 — —

Sizes 0.00 Bad Practice 0.00 — —

Modifier 0.00 — — — —

Regexp 0.00 — — — —

Blocks 0.00 — — — —

3.1 RQ1. Investigating the contribution of
warning types.

Table 3 summarizes the information gain values obtained by the

metrics composing the ninemodels built in our study. The first thing

to notice is that, depending on the code smell type, the warning

types have a different weight: this practically means that a machine

learner for code smell identification should exploit different features

depending on the target code smell rather than rely on a unique

set of metrics to detect them all.

When analyzing the most powerful features of Checkstyle and

PMD, we could notice that source code design-related features are

constantly at the top of the ranked list for all the considered code

smells. This is, for instance, the case of the Regexp warnings given

by Checkstyle for Complex Class or the Design metrics output by

PMD for Spaghetti Code. The most relevant warnings also seem to

be strongly related to specific code smells: as an example, the com-

plexity of regular expressions might strongly affect the likelihood

to have a Complex Class smell; similarly, design-related issues are

the most characterizing aspects of a Spaghetti Code. In other words,

from this analysis we could delineate a relation between the most

relevant features output by Checkstyle and PMD and the specific

code smells considered in this paper.

A different discussion should be done for FindBugs: in this

case, the most powerful metrics mostly relate to Performance or
Security, which are supposed to cover different code issues than

code smells. As such, we expect this static analysis tool to have

lower performance when applied to code smell detection.

Finally, it is worth noting that in some cases the information

gain of the considered features seems to be low, e.g., the Error Prone
warning category of PMD in the case of God Class. On the one

hand, this may potentially imply a low capability of the features

when employed within a machine learning model. On the other

hand, it may also be the case the such a little information would

already be enough to characterize and predict the existence of code

smell instances. Next section addresses this point further.

3.2 RQ2. Assessing the models built using static
analysis tools alone.

Table 4 reports the performance capabilities of the models built

using the warnings given by Checkstyle, FindBugs, and PMD,

respectively. For the sake of space limitations, we only discuss the

overall results obtained with the best configuration of the models,

namely the one considering Random Forest as classifier and Class
Balancer as data balancing algorithm. The results for the other

models are available in our online appendix.

We can immediately point out that the performance of themodels

built using the warnings of static analysis tools can drastically

improve the capabilities of code smell prediction models previously

reported in literature [11, 34]. As an example, Pecorelli et al. [34]

reported that models built using code metrics of the Chidamber-

Kemerer suite [7] work worst than a constant classifier that always

considers an instance as non-smelly. Instead, our findings report

that it is possible to achieve high classification values by relying

on different sets of metrics that cover various aspects of source

code quality. While the values of F-Measure and AUC-ROC vary

depending on the specific models built, all of them range between

55% and 91% and from 78% and 98% when considering F-Measure

and AUC-ROC, respectively.

The lowest performance was obtained by the model built using

the output of FindBugs to predict the presence of Spaghetti Code
instances. Based on the results obtained in RQ1, we can reason on

the motivations behind this result. Unlike the other static analysis

tools, FindBugs has the specific goal to identify bug patterns rather

than more generic design problems: despite containing a number

of warning types analyzing the overall quality of a class, it often

looks at individual lines of code trying to spot the existence of

possible implementation errors. For example, this is the case of

A Preliminary Study on the Adequacy of Static Analysis Warnings with Respect to Code Smell Prediction MaLTeSQuE 2020, November 13, 2020, Sacramento, USA

Table 4: Results reporting the performance of the models built with the warning generated by the three static automatic tools.

Checkstyle FindBugs PMD
Prec. Recall FM AUC-ROC MCC Prec. Recall FM AUC-ROC MCC Prec. Recall FM AUC-ROC MCC

God Class 0.91 0.91 0.91 0.99 0.91 0.83 0.60 0.70 0.92 0.70 0.91 0.70 0.79 0.99 0.80

Complex Class 1.00 0.40 0.57 0.90 0.63 0.84 0.63 0.72 0.92 0.72 0.91 0.59 0.71 0.99 0.73

Spaghetti Code 0.91 0.70 0.79 0.98 0.80 0.78 0.43 0.55 0.78 0.56 0.97 0.66 0.79 0.97 0.80

“Method call passes null to a non-null parameter", that is a type

of warning that validates the exchange of information between

methods. The granularity of these warnings is lower than the other

tools, hence influencing the ability of the model to characterize the

overall quality of a class affected by Spaghetti Code. Hence, we may

conclude that the class-level warning types of FindBugs are not

enough to identify code smells—this is the tool performing worst

also when considering the other code smells.

4 THREATS TO VALIDITY
Construct Validity. This threat concerns the relationship between
theory and observation due to possible measurement errors. The

selected static analysis tools are among the most reliable static

analysis tools and most adopted by developers [41]. Nevertheless,

we cannot exclude the presence of false positives or false negatives

in the detected warnings; further analyses on these aspects are part

of our future research agenda. As for code smells, we employed a

manually-validated oracle, hence avoiding possible issues due to

the presence of false positives and negatives.

Internal Validity. This threat concerns internal factors related to

the study that might have affected the results. When assessing the

role of static analysis tools for code smell detection, we considered

three tools to increase our knowledge on the matter. Yet, we rec-

ognize that other tools might consider different, more powerful

warnings that may affect the performance of the learners. Also in

this case, further analyses are part of our future research agenda.

External Validity. As for the generalizability of the results, our

empirical study should be considered as a preliminary study con-

ducted on five open-source software projects with different scope

and characteristics. We plan to conduct a larger scale analysis as

future work.

Conclusion Validity. This threat concerns the relationship be-

tween the treatment and the outcome. We adopted different ma-

chine learning techniques to reduce the bias of the low prediction

power that a single classifier could have. We also addressed possible

issues due to multi-collinearity, missing hyper-parameter config-

uration, and data unbalance. We recognize, however, that other

statistical or machine learning techniques (e.g. deep learning) might

have yielded similar or even better accuracy than the techniques

we used.

5 RELATEDWORK
The use of machine learning techniques for code smell detection is

recently gaining attention, as proved by the amount of publications

in the last years. A complete overview of the research done in the

field is available in the survey by Azeem et al. [4].

Specifically, while machine learning has been originally applied

to detect individual code smell types, e.g., [20, 21, 44], some effort

has recently been made to generalize its usage. Arcelli Fontana et

al. were among the most active researchers in the field and applied

machine learning techniques to detect multiple code smell types [2],

estimate their harmfulness [2], and compute their intensity [3],

showing the potential usefulness of these techniques. Pecorelli et

al. [35] investigated the adoption of machine learning to classify

code smells according to their perceived criticality. Nonetheless,

Di Nucci et al. [10] reported that the composition of the training

data can notably influence the performance of machine learning-

based code smell detection methods: in particular, this is due to

the small amount of actual smelly instances that can be retrieved

in a software system which does not allow a learner to properly

characterize code smells [33]. In addition, the features exploited

so far (e.g., the CK metrics [7]) are not able to properly describe

code smells and, as a consequence, these techniques do not perform

better than simpler constant baselines [34]. The works discussed

above represent the main motivation leading to our study. Indeed,

we aimed at advancing the state of the art by understanding the

value of thewarnings of static analysis tools as features of amachine

learning-based code smell detector.

On a different note, a few works have applied machine learn-

ing techniques to analyze static analysis warnings and, particu-

larly, to evaluate change- and fault-proneness of SonarQube vi-

olations [12, 17, 40]. Tollin et al. [17], analyzed in the context of

two industrial projects, analyzed whether the warnings given by

the tool are associated to classes with higher change-proneness,

confirming the relation. Falessi et al. [12] analyzed 106 SonarQube

violations in an industrial project: the results demonstrated that

20% of faults were preventable should these violations have been

removed. Lenarduzzi et al. [40] assessed the fault-proneness of

SonarQube violations on 21 open-source systems, showing that

violations classified as “bugs” hardly lead to a failure. In another

work, Lenarduzzi et al. [23] showed that technical debt cannot be

predicted using standard software metrics. Our work is comple-

mentary to those discussed above, since our goal is to exploit the

outcome of different static analysis tools in order to improve the

accuracy of code smell detection.

6 CONCLUSION
In this paper, we assessed the adequacy of static analysis warnings

in the context of code smell prediction. We started by analyzing

the contribution given by each warning type to the prediction of

three code smell types. Then, we measured the performance of

machine learning models using static analysis warnings as features

and aiming at identifying the presence of code smells. To sum up,

the main contributions provided by this paper are:

(1) An investigation into the role of static analysis warnings for

machine learning-based code smell detection;

MaLTeSQuE 2020, November 13, 2020, Sacramento, USA Lujan, Pecorelli et al.

(2) An empirical study of how static analysis warnings con-

tribute to the accuracy of existing machine learning ap-

proaches for code smell detection;

(3) An online appendix [] reporting all data and scripts used to

conduct our study.

Our future research agenda includes a larger scale evaluation of

the devised models as well as the definition of a combined model

able to exploit warnings coming from different static analysis tools

to improve the overall code smell identification performance.

REFERENCES
[1] Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano Antoniol.

2011. An empirical study of the impact of two antipatterns, blob and spaghetti

code, on program comprehension. In 2011 15th European Conference on Software
Maintenance and Reengineering. IEEE, 181–190.

[2] Francesca Arcelli Fontana, Mika V. Mäntylä, Marco Zanoni, and Alessandro

Marino. 2016. Comparing and Experimenting Machine Learning Techniques for

Code Smell Detection. Empirical Softw. Engg. 21, 3 (June 2016), 1143–1191.
[3] Francesca Arcelli Fontana and Marco Zanoni. 2017. Code Smell Severity Classifi-

cation Using Machine Learning Techniques. Know.-Based Syst. 128, C (July 2017),

43–58.

[4] Muhammad Ilyas Azeem, Fabio Palomba, Lin Shi, and Qing Wang. 2019. Machine

learning techniques for code smell detection: A systematic literature review and

meta-analysis. Information and Software Technology 108 (2019), 115–138.

[5] William J Brown, Raphael C Malveau, Hays W McCormick III, and Thomas J

Mowbray. 1998. Refactoring software, architectures, and projects in crisis.

[6] Gemma Catolino, Fabio Palomba, Francesca Arcelli Fontana, Andrea De Lucia,

Andy Zaidman, and Filomena Ferrucci. 2020. Improving change predictionmodels

with code smell-related information. Empirical Software Engineering 25, 1 (2020).
[7] Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite for object

oriented design. IEEE Transactions on software engineering 20, 6 (1994), 476–493.

[8] W. Cunningham. 1992. TheWyCash Portfolio Management System (OOPSLA-92).
[9] Elder Vicente de Paulo Sobrinho, Andrea De Lucia, and Marcelo de Almeida Maia.

2018. A systematic literature review on bad smells—5 W’s: which, when, what,

who, where. IEEE Transactions on Software Engineering (2018).

[10] Dario Di Nucci, Fabio Palomba, Damian Tamburri, Alexander Serebrenik, and

Andrea De Lucia. 2018. Detecting Code Smells using Machine Learning Tech-

niques: Are We There Yet?. In Int. Conf. on Software Analysis, Evolution, and
Reengineering.

[11] Dario Di Nucci, Fabio Palomba, Damian A Tamburri, Alexander Serebrenik, and

Andrea De Lucia. 2018. Detecting code smells using machine learning techniques:

are we there yet?. In 26th international conference on software analysis, evolution
and reengineering (SANER). IEEE, 612–621.

[12] D. Falessi, B. Russo, and K. Mullen. 2017. What if I Had No Smells? ESEM (2017).

[13] Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. 2012. Automatic

detection of bad smells in code: An experimental assessment. J. Object Technol.
11, 2 (2012), 5–1.

[14] Francesca Arcelli Fontana, Jens Dietrich, Bartosz Walter, Aiko Yamashita, and

Marco Zanoni. 2016. Antipattern and code smell false positives: Preliminary

conceptualization and classification. In 23rd international conference on software
analysis, evolution, and reengineering (SANER), Vol. 1. IEEE, 609–613.

[15] Francesca Arcelli Fontana, Vincenzo Ferme, Marco Zanoni, and Aiko Yamashita.

2015. Automatic metric thresholds derivation for code smell detection. In 6th
International Workshop on Emerging Trends in Software Metrics. IEEE, 44–53.

[16] M. Fowler and K. Beck. 1999. Refactoring: Improving the Design of Existing

Code. Addison-Wesley Longman Publishing Co., Inc. (1999).
[17] F. Arcelli Fontana I. Tollin, M. Zanoni, and R. Roveda. 2017. Change Prediction

Through Coding Rules Violations. Int. Conf. on Evaluation and Assessment in
Software Engineering, 61–64.

[18] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.

2013. Why don’t software developers use static analysis tools to find bugs?. In

35th International Conference on Software Engineering (ICSE). IEEE, 672–681.
[19] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano

Antoniol. 2012. An exploratory study of the impact of antipatterns on class

change-and fault-proneness. Empirical Software Engineering 17, 3 (2012), 243–

275.

[20] F. Khomh, S. Vaucher, Y.-G. Gueheneuc, and H. Sahraoui. 2009. A Bayesian

Approach for the Detection of Code and Design Smells. In Int. Conf. on Quality
Software (QSIC ’09). IEE, Jeju, Korea, 305–314.

[21] Foutse Khomh, Stephane Vaucher, Yann-Gaël Guéhéneuc, and Houari Sahraoui.

2011. BDTEX: A GQM-based Bayesian approach for the detection of antipatterns.

Journal of Systems and Software 84, 4 (2011), 559–572.
[22] Manny M Lehman. 1996. Laws of software evolution revisited. In European

Workshop on Software Process Technology. Springer, 108–124.

[23] Valentina Lenarduzzi, Antonio Martini, Davide Taibi, and Damian Andrew Tam-

burri. 2019. Towards Surgically-Precise Technical Debt Estimation: Early Results

and Research Roadmap. In 3rd International Workshop on Machine Learning Tech-
niques for Software Quality Evaluation (MaLTeSQuE 2019). 37–42.

[24] V. Lenarduzzi, A. Sillitti, and D. Taibi. 2020. A Survey on Code Analysis Tools

for Software Maintenance Prediction. In 6th International Conference in Software
Engineering for Defence Applications. Springer International Publishing, 165–175.

[25] Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata Sabané, Yann-Gaël

Guéhéneuc, and Esma Aimeur. 2012. Smurf: A svm-based incremental anti-

pattern detection approach. InWorking Conference on Reverse Engineering. 466–
475.

[26] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on software
Engineering 4 (1976), 308–320.

[27] Naouel Moha, Yann-Gael Gueheneuc, Laurence Duchien, and Anne-Francoise

Le Meur. 2009. Decor: A method for the specification and detection of code and

design smells. IEEE Transactions on Software Engineering 36, 1 (2009), 20–36.

[28] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and An-

drea De Lucia. 2014. Do they really smell bad? a study on developers’ perception

of bad code smells. In International Conference on Software Maintenance and
Evolution. IEEE, 101–110.

[29] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Denys

Poshyvanyk, and Andrea De Lucia. 2014. Mining version histories for detecting

code smells. IEEE Transactions on Software Engineering 41, 5 (2014), 462–489.

[30] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco

Oliveto, and Andrea De Lucia. 2018. On the diffuseness and the impact on

maintainability of code smells: a large scale empirical investigation. Empirical
Software Engineering 23, 3 (01 Jun 2018), 1188–1221.

[31] Fabio Palomba, Dario Di Nucci, Michele Tufano, Gabriele Bavota, Rocco Oliveto,

Denys Poshyvanyk, and Andrea De Lucia. 2015. Landfill: An open dataset of

code smells with public evaluation. In 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories. IEEE, 482–485.

[32] Fabio Palomba, Annibale Panichella, Andrea De Lucia, Rocco Oliveto, and Andy

Zaidman. 2016. A textual-based technique for smell detection. In 24th interna-
tional conference on program comprehension (ICPC). IEEE, 1–10.

[33] Fabiano Pecorelli, Dario Di Nucci, Coen De Roover, and Andrea De Lucia. 2020.

A large empirical assessment of the role of data balancing in machine-learning-

based code smell detection. Journal of Systems and Software (2020), 110693.
[34] Fabiano Pecorelli, Fabio Palomba, Dario Di Nucci, and Andrea De Lucia. 2019.

Comparing heuristic and machine learning approaches for metric-based code

smell detection. In 27th International Conference on Program Comprehension
(ICPC). IEEE, 93–104.

[35] Fabiano Pecorelli, Fabio Palomba, Foutse Khomh, and Andrea De Lucia. 2020.

Developer-Driven Code Smell Prioritization. In International Conference on Min-
ing Software Repositories.

[36] J. Ross Quinlan. 1986. Induction of decision trees. Machine learning 1, 1 (1986),

81–106.

[37] Dag IK Sjøberg, Aiko Yamashita, Bente CD Anda, Audris Mockus, and Tore

Dybå. 2012. Quantifying the effect of code smells on maintenance effort. IEEE
Transactions on Software Engineering 39, 8 (2012), 1144–1156.

[38] Davide Taibi, Andrea Janes, and Valentina Lenarduzzi. 2017. How developers

perceive smells in source code: A replicated study. Information and Software
Technology 92 (2017), 223–235.

[39] Chakkrit Tantithamthavorn and Ahmed E Hassan. 2018. An experience report

on defect modelling in practice: Pitfalls and challenges. In Proceedings of the 40th
International Conference on Software Engineering: Software Engineering in Practice.
286–295.

[40] F. Lomio V. Lenarduzzi, H. Huttunen, and D. Taibi. 2019. Are SonarQube Rules

Inducing Bugs? 27th International Conference on Software Analysis, Evolution and
Reengineering (SANER) (preprint arXiv:1907.00376) (2019).

[41] C. Vassallo, S. Panichella, F. Palomba, S. Proksc, H.C. Gall, and A. Zaidman. 2019.

How developers engage with static analysis tools in different contexts. Empirical
Software Engineering (2019).

[42] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, A. Zaidman, and H. C. Gall. 2018.

Context is king: The developer perspective on the usage of static analysis tools.

26th International Conference on Software Analysis, Evolution and Reengineering
(SANER) (2018).

[43] Fadi Wedyan, Dalal Alrmuny, and James M Bieman. 2009. The effectiveness of

automated static analysis tools for fault detection and refactoring prediction. In

International Conference on Software Testing Verification and Validation. 141–150.
[44] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk. 2016. Deep learning

code fragments for code clone detection. In Int. Conf. on Automated Software
Engineering (ASE). 87–98.

[45] Aiko Yamashita and Leon Moonen. 2012. Do code smells reflect important

maintainability aspects?. In 2012 28th IEEE international conference on software
maintenance (ICSM). IEEE, 306–315.

[46] Aiko Yamashita and Leon Moonen. 2013. Do developers care about code smells?

An exploratory survey. In 2013 20th Working Conference on Reverse Engineering
(WCRE). IEEE, 242–251.

	Abstract
	1 Introduction
	2 Research Methodology
	2.1 Context of the Study
	2.2 Data Collection
	2.3 Data Analysis

	3 Results and Discussion
	3.1 RQ1. Investigating the contribution of warning types.
	3.2 RQ2. Assessing the models built using static analysis tools alone.

	4 Threats to Validity
	5 Related Work
	6 Conclusion
	References

