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ABSTRACT
Code smells represent a well-known problem in software engineer-
ing, since they are a notorious cause of loss of comprehensibility and
maintainability. The most recent efforts in devising automatic ma-
chine learning-based code smell detection techniques have achieved
unsatisfying results so far. This could be explained by the fact that
all these approaches follow a within-project classification, i.e., train-
ing and test data are taken from the same source project, which
combined with the imbalanced nature of the problem, produces
datasets with a very low number of instances belonging to the
minority class (i.e., smelly instances). In this paper, we propose a
cross-project machine learning approach and compare its perfor-
mance with a within-project alternative. The core idea is to use
transfer learning to increase the overall number of smelly instances
in the training datasets. Our results have shown that cross-project
classification provides very similar performance with respect to
within-project. Despite this finding does not yet provide a step
forward in increasing the performance of ML techniques for code
smell detection, it sets the basis for further investigations.
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1 INTRODUCTION
Software maintenance and evolution is a complex activity of the
software life cycle that requires developers to continually change
the source code, in order to adapt it to new requirements or fix
defects identified in production [25]. More and more often, de-
velopers are required to perform these modifications under strict
deadlines, making them neglect good programming practices in
favor of delivering the most appropriate product on time [6, 24, 37].
This common practice often leads to the introduction of technical
debt [10], which can be generated by the presence of the so-called
code smells [22], sub-optimal implementation choices that erode
the maintainability and understandability of source code [1, 30, 40].

Over the last years, researchers have been proposing several
approaches and techniques which are able to automatically detect
code smells in code-bases [4, 15, 16, 28, 32, 33]. The majority of
them are heuristics-based: they use a two-step method in which
a collection of metrics is computed first, and then thresholds are
applied to those metrics to distinguish between smelly and non-
smelly groups. They mainly vary in terms of the algorithms used
to detect code smells (e.g., a combination of metrics [28] or more
sophisticated methodologies such as Relational Topic Modeling
[4]) and the metrics used (e.g., based on code metrics [28], textual
[33] or historical data [32]). While it has been demonstrated that
such detectors have good detection accuracy, previous research has
revealed a number of significant limitations that may prevent their
practical usage [14, 43]: (i) the output given by these detectors may
be subjectively interpreted by developers [18, 27], (ii) there is no
consensus between them [17], and (iii) the majority of them require
thresholds definition to differentiate smelly code components from
non-smelly ones; choosing them well heavily impacts the accuracy
of the final results [14].

These are the main reasons for a recent trend in using machine
learning for code smell detection [19]. In such a scenario, a clas-
sifier exploits a set of independent variables (a.k.a. predictors) to
determine the presence (or the absence) of a code smell in a spe-
cific code component. This approach should overcome both the
threshold issue, as the detection rule is automatically deduced from
training data (and not defined a priori), and the lack of consensus
between heuristic predictors, since multiple metrics can be used as
smelliness predictors.

Despite the expectations behind the use of machine learning
for code smell detection, previous studies have found controver-
sial results in terms of classification performance [13, 19]. More
specifically, not only it has been shown that within project machine
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learning models suffer from heavily imbalanced datasets, perform-
ing worse than heuristic-based detectors [35], but also that current
balancing techniques do not improve models’ performance [34].

For these reasons, this paper attempts to perform a step further
by investigating whether the use of a transfer learning approach
may boost the code smell classification performance. We exploit a
validated dataset of code smells made up by 15 open source projects
to train four well-known machine learning algorithms. We apply a
leave-one-project-out validation to assess the performance of the
models and compare cross-project techniques with within-project
baselines trained on the individual projects of the dataset.

Our results show that the experimented approaches are very sim-
ilar from a statistical perspective. Nonetheless, we point out that, in
some cases, cross-project models might outperform within-project
techniques. This may possibly indicate initial insights into the un-
explored capabilities of transfer learning for code smell detection,
encouraging to deepen the investigations on this matter.

Replicability. To enable full replicability and reproducibility
of our results, we made both data and scripts used in the study
publicly available in our online appendix [12].

2 RELATEDWORK
Over the last years, many researchers have studied code smells
in terms of their nature and their impact on code-bases [2, 11].
One of the two main research tracks in this field is related to the
automatic or semi-automatic detection of code smells, either using
heuristic-based approaches or machine-learning. In this section we
put more focus on the machine learning-based, to better explain
their theoretical advantages with respect to the heuristic-based
ones, and to better explain their real limitations. The techniques
which fall in this category generally exploit a supervised method,
i.e., they use a set of independent variables (predictors), to predict
the value of a dependent variable (i.e., the smelliness of a class)
using a machine learning classifier. The model may be trained using
data from the subject project (within-project strategy) or from other
systems (cross-project strategy).

Arcelli Fontana et al. [19–21] achieved the most relevant results
in this field. They not only hypothesized that machine learning
might contribute to a more objective assessment of the severity of
the code smells [21], but also provided a learning-based method to
assess code smell intensity [20]. Finally, they conducted a bench-
mark study to compare 16 machine-learning-based techniques for
the detection of four code smells, obtaining F-Measure values close
to 100%. However, Di Nucci et al. [13] showed that the performance
of these techniques strongly depends on the dataset exploited, hence
questioning whether machine learning for code smell detection
could be really used in a real-case scenario.

Recently, Pecorelli et al. [35] conducted an empirical study aimed
at comparing the performance of heuristic-based (metric-based)
approaches with machine learning-based ones. They considered
five code smell types and contrasted machine learning models with
DECOR [28], using as predictors the same set of metrics used by the
tool. They showed that, despite DECOR generally performing better
than the learning-based detectors, its precision is still too low to
make it usable in practice. This is mainly caused by the imbalanced
nature of the learning-based code smell detection problem.

The role of balancing in machine learning code smell detection
was further investigated by Pecorelli et al. [34]: in this case, they
took into account five approaches to mitigate data imbalance issues
to understand their impact on machine learning-based approaches
for code smell detection. They pointed out that avoiding balancing
does not dramatically impact accuracy since existing data balancing
techniques are not suited for code smell detection, possibly even
deteriorating the classification performance. As a result of these
findings, we conclude that the problem of classifying code smells
with machine learning is still open: this paper poses the basis for a
complementary viewpoint, namely the use of transfer learning for
training effective code smell detection models.

3 EMPIRICAL STUDY DESIGN
The goal of this study is to compare a cross-project machine learning-
based approach for code smell detection with a within-project one,
with the purpose of having a preliminary indication of whether
transfer learning can be considered a valid alternative for code
smell detection. The perspective is of both researchers and practi-
tioners: the former have an interest in recognizing the shortcomings
of existing methods, while the latter are interested in testing the
effectiveness of machine learning for code smell detection. In detail,
we aim at addressing the following research question:

RQ. How do machine learning-based cross-project approaches
for code smell detection perform when compared to traditional
within-project baselines?

To fulfill our goal, we conducted an empirical investigation in-
volving 15 open-source projects and three code smells types. More
details are reported in the following sections.

3.1 Context of the Study
The context of our study is made up of two fundamental elements:
projects and code smells.

Projects. For our study, we employed a publicly available code
smell dataset [30], which provides manually validated instances
of 13 code smell types pertaining to multiple releases of 30 Java
open-source projects. Of these, we discarded the systems that were
not present anymore on GitHub at the time of the study or that do
not use release tags on GitHub because they were not suitable to
perform a reproducible mining. This filter led us to 15 projects left.
Since we aimed at creating cross-project models, we then considered
a single release for each project: this was required to avoid possible
bias in the training phase of the models caused by using project
data coming from previous releases of the same projects. For this
reason, we limited the study to the last releases of the 15 available
projects. Table 1 reports the main characteristics of these systems.

Code Smells. While the code smell dataset contains data pertain-
ing to 13 code smell types [30], in our work we took into account
only three of them, namely Complex Class, God Class (or Large
Class), and Spaghetti Code. Table 2 reports a description for each
of them. The selection was driven by two main factors. On the one
hand, these smells are among the most harmful for developers [31],
as they heavily impact the maintainability of source code [1]. On
the other hand, these have been investigated multiple times by the
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Table 1: Projects considered in the context of study

Project Name Release Tag Classes LOC

ant rel/1.8.3 1163 169 510
ant-ivy 2.0.0-alpha2 388 36 665
cassandra cassandra-1.0.0 644 68 160
elasticsearch v0.19.0 2327 188 689
hadoop release-0.6.0 297 40 129
hive release-0.9.0 1268 161 239
hsqldb 2.2.8 589 182 898
karaf karaf-2.3.0 549 42 420
lucene releases/lucene-solr/3.6.0 3608 406 298
manifold-cf release-0.6 729 119 998
nutch release-1.4 296 30 024
pig release-0.8.0 1345 206 603
qpid 0.14 1528 150 037
struts STRUTS_2_3_4 1797 148 151
xerces2-j Xerces-J_2_3_0 771 113 385

code smell research community and, for this reason, we decided to
focus on them first in the context of this preliminary study.

3.2 Experimental Setup
The first step that we performed in our study was to mine the
selected projects in order to extract the software metrics to use as
predictors. We mined a set of well known object-oriented static
metrics, i.e., the ones defined by Chidamber and Kemerer [7]. As a
result, we obtained a dataset where each row represented a class
belonging to the project and each column the value of a metric
computed on that class. We then combined this dataset with the
one reporting the code smells instances. Thus, we added three
columns, one for each smell considered: the value ‘1‘ indicated the
presence of a smell in the class, ‘0‘ otherwise.

Afterwards, we set up the machine learning-based classifiers
to detect code smells. This entailed a number of steps, from the
description of the dependent and independent variables to the pre-
processing steps necessary to avoid issues like multi-collinearity
and biased interpretation [29].

Dependent Variables. The selected dependent variable is an
indicator of a presence (or absence) of each code smell considered,
as indicated in the collected dataset.

Independent Variables. We used the code metrics previously
mined as independent variables. In particular, Table 3 reports the
predictors used for each of the considered smells. The choice of
these metrics was driven by our willingness to use the same indi-
cators as previous work [35]: in this way, we could have a direct
comparison with the results reported in literature and possibly
corroborate previous findings.

Machine LearningModels. To perform the classification phase,
we configured and executed four well-known and widely used

Table 2: Code smells considered in the context of the study

Name Description

Complex Class A class having at least one method hav-
ing a high cyclomatic complexity.

God Class (Large Class) A Large Class implementing different
responsibilities and centralizing most of
the system processing.

Spaghetti Code A class implementing complex methods
interacting between them, with no pa-
rameters, using global variables.

Table 3: List of predictors used for each smell

Acronym Full Name Interested Smells

WMC Weighted Methods Count Complex Class
ELOC Effective Lines of Code Spaghetti Code, Large Class
NMNOPARAM Number of Methods with NO PARAMeters Spaghetti Code
NOM Number Of Methods Large Class
NOA Number Of Attributes Large Class
LCOM Lack of COhesion in Methods Large Class

ML Classifiers, i.e., Logistic Regression, Decision Tree, Naive
Bayesian Classifier, and Random Forest. In particular, we relied
on the implementations provided by the Tidymodels R package.1
Before running each classifier, we performed some preprocessing
steps to avoid possible biases due to an improper interpretation of
their performance [26, 39, 42]. More specifically:

Hyper-parameter Tuning. Each of the selected classifiers has a
number of parameters that have to be configured before running.
We configured those hyper-parameters by exploiting the Grid
Search algorithm [5] using AUC-ROC as an optimization target.

Data Balancing. Code smell detection suffers from data imbal-
ance [13]. We applied the Synthetic Minority Oversampling Tech-
nique, a.k.a. SMOTE, since it has been proven to be the best per-
forming data balancing technique when detecting code smells
[34].

Validation Strategy. To assess the capabilites of the experi-
mented machine learning models, we adopted two different val-
idation strategies, according to the configuration under analysis
(i.e., within- or cross-project). For within-project, we adopted the
ten-fold cross validation [38]. For each of the selected projects, this
strategy first randomly partitions the data into ten stratified folds
(i.e., each fold has the same proportion of code smell instances) of
equal size. Then, it iteratively selects a single fold to use as test
set, while the remaining nine are used as training set. As for the
cross-project configuration, we adopted the leave-one-out cross-
validation [41]. This strategy iteratively selects one project as test
set, while the remaining ones are used as training set.

It is worth remarking that the preprocessing steps were per-
formedwhen training themodels, hence not biasing the distribution
of code smells in the test set.
1Tidymodels: https://www.tidymodels.org/
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Figure 1: Box-plots comparing the performances of within- and cross-project approaches, plotted for each smell in terms of
MCC. For Large Class detection the median values of the cross-project models are higher or similar than their within-project
counterparts. In the other cases, there is no clear winner between the approaches.

Evaluation metrics. To evaluate the performance achieved by
the experimented techniques, we relied on four well-known infor-
mation retrieval metrics [3, 36], namely precision, recall, F-measure,
and Mattews Correlation Coefficient (MCC). Then, to statistically
verify our results, we applied the non-parametric Wilcoxon Rank
Sum Test [9], with α = 0.05, on the distribution of MCC values
achieved by within- and cross-project configurations. We also es-
timated the magnitude of the differences by exploiting the Cliff’s
Delta (or δ ) non-parametric effect size measure [8]. We interpreted
the effect size values as: negligible for |d | < 0.10, small for |d | <
0.33, medium for 0.33 ≤ |d | < 0.474, and large for |d | ≥ 0.474 [8].

4 ANALYSIS OF THE RESULTS
Figure 1 shows the boxplots reporting the distributions of the MCC
scores computed for both within- and cross-project models.

As a first consideration, we can see that, regardless of the model
applied, the higher performance is achieved when classifying Large
Class instances, whereas theworst is foundwhen detecting Spaghetti
Code. This result corroborates previous findings that reported the
Large Class smell as the easiest to detect and the Spaghetti Code as
the hardest to identify [28, 32, 35].

Looking at the comparison between classifiers, it seems that,
generally, Logistic Regression achieves the highest performance
for cross-project classification, while Naive Bayesian Classifier

Table 4: Results for Wilcoxon Test and Cliff’s Delta com-
puted for each combination ofmodel and smell MCC values.
P-values lower than 0.05 are reported in bold

Smell Name Model Name p-value d Meaning

Complex Class Naive Bayesian 0.181 -0.444 medium
Complex Class Random Forest 0.863 -0.074 negligible
Complex Class Logistic Regression 0.388 -0.296 small
Complex Class Decision Tree 0.327 -0.333 medium
Large Class Naive Bayesian 0.878 -0.066 negligible
Large Class Random Forest 0.695 0.159 small
Large Class Logistic Regression 0.278 0.366 medium
Large Class Decision Tree 0.520 0.25 small
Spaghetti Code Naive Bayesian 0.978 -0.012 negligible
Spaghetti Code Random Forest 0.019 0.607 large
Spaghetti Code Logistic Regression 1 0 negligible
Spaghetti Code Decision Tree 0.686 0.103 negligible

is the one performing best in the within-project scenario, achiev-
ing an overall performance that is perfectly in line with previous
investigations conducted in the field [35].

Turning to the differences between within- and cross-project
classification, the boxplots give a first indication that there is not
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a clear difference between the performance achieved by the two
approaches, with some cross-project models performing better (e.g.,
Large Class), and some performing worse (e.g., Complex Class) than
their within-project counterparts.

To support this last observation, let us consider the results of the
statistical tests ( i.e., Wilcoxon and Cliff’s Delta) shown in Table 4,
that report the differences in the distribution of MCC values for
each smell and model. These results clearly indicate that there is no
statistically significant difference between the two approaches, thus
confirming our intuitions. This is also further strengthened when
considering that the Cliff’s delta values are in most cases “small” or
“negligible”. The only exception is represented by the application
of Random Forest for Spaghetti Code. In this case, the results
indicate statistically significant differences (i.e., a p-value lower
than 0.05) with a large effect size in favor of cross-project—looking
at the boxplots in Figure 1, this was the only case in which there
was a clearly visible difference in the distributions achieved.

To broaden the scope of the discussion, we can observe that,
despite the presence of some promising models, e.g., Random For-
est for Large Class detection, no median value goes beyond 0.5,
meaning that the overall classification performance of the experi-
mented models is fairly low. Our results confirm once again that the
problem of classifying code smells using machine learning is still
far from being solved. As a matter of fact, the application of transfer
learning does not provide immediate benefits: indeed, increasing
the number of instances of the minority class in the training sets
did not overcome the limitations pointed out in literature [34].

However, it is important to note that, while within-project mod-
els have been analyzed from different perspectives, cross-project
ones are still unexplored: as such, we cannot exclude that this
approach may lead to a performance improvement in the future.
Moreover, the fact that cross-project approach does not perform
worse than within-project one paves the way for further, deeper
investigations.

Main findings for RQ

Cross-project machine learning for code-smell detection shows
no statistically significant differences with respect to within-
project approaches. However, the early results achieved pave
the way for further improvement and investigations.

5 THREATS TO VALIDITY
In the following, we describe how we assessed and mitigated po-
tential threats to the validity of our study.

Threats to Construct Validity. This group of threats is con-
cerned with the relationship between hypothesis and observation.
A first, possible threat could be represented by the dataset used for
our empirical analysis. We based the selection of the dataset on a
number of considerations, including heterogeneity of the data and
the provision of a manual validation. However, we must keep in
mind that they might include discrepancies or inaccuracies, such as
labeling errors or some positive instances thatmight have been over-
looked. Another potential threat might be represented by the ma-
chine learning models we adopted, since their construction needed

to take into account several aspects that might have influenced
the obtained results, e.g., the predictors used. However, since we
applied well-known and established rule of thumbs, that have been
employed also in previous studies (e.g., [13, 34, 35]), we can consider
them reliable for our study.

Threats to Conclusion Validity. Concerns about the relation-
ship between treatment and outcome were addressed by using a
collection of commonly used indicators to assess the tested tech-
niques (i.e., precision, recall, F-measure, MCC). Furthermore, we
supported our results with sufficient statistical tests (Wilcoxon and
Cliff’s delta). In the case of the within-project machine learning
model, the use of 10-fold cross validation may have introduced a
bias in the interpretation of the results. This strategy randomly par-
titions the dataset into training and test sets; this randomness may
have resulted in skewed sets, which under- or over-estimate model
performance. To account for this, we conducted a further analysis,
as suggested by Hall et al.[23], in which we ran the experimented
model several times to determine how robust it is in relation to
the random splits performed by the validation strategy. As a result,
we conducted a 10 times 10-fold cross validation and then tested
the instability of the model’s predictions; we discovered that the
predictions do not change in 97% of the cases. According to these
findings, we can assume that the model’s outcomes are not affected
by the randomness of the validation strategy.

Threats to External Validity. To what concerns the external
validity of our study, we considered a dataset of 15 java project
versions. While this number seems to be small, several factors need
to be considered that are relevant for the problem. In the context
of within-project approaches, the number of considered projects
or releases does not affect the external validity, since all the data
must come from the same source, i.e., the same project. In this
case, the number of positive instances is limited by nature and
the only applicable solutions are represented by the applied bal-
ancing techniques. Moreover, since the obtained model could be
used only to detect new code smells emerging in the same project,
within-project approaches require only validated data coming from
a single release of a project. On the other hand, to what concerns
transfer learning, which uses data coming from multiple sources, it
might be affected by the number of projects considered for model
training. This limits the possibility of a larger-scale empirical study.
Nonetheless, further studies involving a greater number of projects
is on our research agenda, whenever new data will be available.
Another aspect to take into account was the choice of the smells
that we made. We chose a set of smells to reflect a wide range of de-
sign issues (e.g., smells related to complexity or excessive coupling
between objects), that have been already object of several studies.
This helped us better understand the potential of transfer learning
techniques for detecting code smells, as well as their drawbacks in
comparison to “traditional” approaches.

6 CONCLUSION AND FUTUREWORK
In this paperwe have compared two approaches formachine learning-
based code smell detection, i.e., within- and cross-project, with the
aim of discovering if a transfer learning approach (cross-project)
could bring some benefits in machine learning code smell detection
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research. Our preliminary results show that there is no statistically
significant difference between the two approaches. However, since
the transfer learning approach does not perform worse than the
“traditional” one, it may be worth to keep investigating on this
topic, for instance by accurately tuning the cross-project machine
learning pipeline or by defining ad hoc software engineering for
AI techniques. In our future research agenda we plan to conduct
a larger study, involving other machine-learning models that we
have not employed so far. Moreover, whenever a new and larger
code smell dataset will be available, we plan to replicate this study
in order to deepen our knowledge on this topic.
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